
Nameless, Painless

Nicolas Pouillard
INRIA

Nicolas.Pouillard@inria.fr

Abstract
De Bruijn indices are a well known technique for programming
with names and binders. They provide a representation that is both
simple and canonical.

However, programming errors tend to be really easy to make.
We propose a safer programming interface implemented as a li-
brary. Whereas indexing the types of names and terms by a nu-
merical bound is a famous technique, we index them by worlds, a
different notion of index that is both finer and more abstract. While
being more finely typed, our approach incurs no loss of expressive-
ness or efficiency.

Via parametricity we obtain properties about functions poly-
morphic on worlds. For instance, well-typed world-polymorphic
functions over open λ-terms commute with any renaming of the
free variables.

Our whole development is conducted within Agda, from the
code of the library, to its soundness proof and the properties of
external functions. The soundness of our library is demonstrated
via the construction of a logical relations argument.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; Polymorphism

General Terms Design, Languages, Theory

Keywords names, binders, meta-programming, name abstraction,
de Bruijn indices

1. Introduction
It is quite common in the programming realm to deal with the mun-
dane business of data structures with names and binders. Compil-
ers, code generators, static analysers, theorem provers, and type-
checkers have this in common. They manipulate programs, formu-
lae, proofs, and types. When seen as pieces of data, there is a com-
mon difficulty: the representation of variables (names and binders).

One traditional approach is to represent all the occurrences of
a bound variable identically by using character strings or integers.
While being the most obvious representation it is known to cause
a lot of trouble when dealing with operations like substitution. In
particular we name it the capture-avoiding substitution because it
has to rename some variables to avoid accidental changes called
captures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

In this article we focus on a different kind of representation,
namely de Bruijn indices [6]. This representation is said to be
nameless because variables are no longer identified by a name but
a notion of “distance” to the binding point. De Bruijn indices are
the most famous nameless representation and in the following we
will use the term “nameless” as a synonym for “de Bruijn indices”.

The nameless approach solves part of the problem by providing
a canonical representation. More precisely binding occurrences are
no longer named (we now use λ. instead of λx.). Then bound
variables are represented by the “distance” to the binding λ. This
distance is the number of λs to cross in order to reach the binding λ.

A major issue with this nameless representation is its arithmetic
flavor. Indeed properties about names and binders are turned into
arithmetic formulae. The result can be harder to understand, and
worse, easier to get wrong. To remedy this, several techniques have
been proposed to give finer grained types to these representations
[1, 2, 5, 7]. We continue further in this direction by providing a
safer system to program with a nameless representation.

1.1 Contributions
In a previous paper [10] we developed an abstract interface to pro-
gram with names and binders. The interface can be both imple-
mented in a named or a nameless style. Here by focusing on a
nameless representation we greatly simplify the programming in-
terface needed to achieve our safety goals. This is at the expense
of some loss of abstraction. However while the goals are less am-
bitious, the results are significantly more applicable since simpler
and closer to a concrete representation.

Our previous nameless implementation was relying on the Fin
approach (described in section 1.4.3). The notion of worlds pre-
sented here (in section 2.3) is significantly more precise than Fin.
However the worlds were already abstract to the programmer and
they still are. Indeed abstraction is necessary to retain the para-
metricity properties we want from world-polymorphic functions.

While a fair amount of proofs were already mechanized in [10],
the logical relation argument was still largely on paper. Here we
not only finished these mechanized proofs but have every part well
connected in one single setup. The code and proofs are accessible
online at [9] and we encourage the reader to have a look for
reference on technical details and applications.

1.2 Outline of the paper
This paper is organized as follows. In the remainder of this section
we present several nameless techniques to represent data structures
with bindings. In section 2 we detail our approach to the problem.
In section 3 we give some examples and advanced operations. In
section 4 we develop a logical relation construction which ensures
the soundness properties we want, and we show how to exploit
these properties on concrete examples. All the construction is built
in the AGDA language, our system is an AGDA library and its
soundness proof is done in AGDA as well.

1.3 A brief introduction to AGDA notation
Throughout the paper, our definitions are presented in the syn-
tax of AGDA. In AGDA, Set (or Set0) is the type of small
types like Bool, Maybe (List Bool), or N. Set1 is the type of
Set, Set → Bool, or N → Set. The function space is written
A → B, while the dependent function space is written (x : A) →
B or ∀ (x : A) → B. An implicit parameter, introduced via
∀{x : A} → B, can be omitted at a call site if its value can be
inferred from the context. There are shortcuts for introducing mul-
tiple arguments at once or for omitting a type annotation, as in
∀{A} {i j : A} x → e. There is no specific sort for proposi-
tions in AGDA, everything is in Set ` for some `. The unit type is
a record type with no fields named >, it also represents the True
proposition. The empty type is an (inductive) data type with no
constructors named ⊥, it also represents the False proposition.
The negation ¬ A is defined as A → ⊥.

The same name can be used for different data constructors.
AGDA makes use of type annotations to resolve ambiguities.

As in Haskell, a definition consists of a type signature and a se-
quence of defining equations, which may involve pattern-matching.
The with construct extends a pattern-matching-based definition
with new columns. An ellipsis ... is used to elide a redundant
equation prefix.

AGDA is strict about whitespace: x≤y is an identifier, whereas
x ≤ y is an application. This allows naming a variable after its
type (deprived of any whitespace). We use mixfix declarations,
such as _⊕_. We use some definitions from AGDA’s standard
library: natural numbers, booleans, lists, and applicative functors
(pure, _⊗_).

For the sake of conciseness, the code fragments presented in
the paper are sometimes not perfectly self-contained. However, a
complete AGDA development is available online [9].

1.4 Related work: nameless representations
Various techniques have been discovered to build a nameless rep-
resentation. We have chosen a few of them which gradually setup
the stage.

1.4.1 bare: The original approach
We call this one bare, because it solely relies on natural numbers.
To make things more concrete here is an example of its use when
defining the untyped λ-calculus with local bindings (let). Our
naming convention is as follows: we call Tm the type of λ-terms,
V is the data constructor for variables, _·_ is for the application, ň
is for the λ-abstraction, and finally Let is for local bindings.

data Tm : Set where
V : (x : N) → Tm
_ ·_ : (t u : Tm) → Tm
ň : (t : Tm) → Tm
Let : (t u : Tm) → Tm

From the point of view of the binding structure, it is striking that
no difference appears between the constructors of the data type. It is
completely up to the programmer to manage the scoping difference
introduced by ň and Let. This is even more worrying in the Let
case since we have no clue of difference between the arguments.

Here is an example using this representation to build the λ-term
for λf.λx.f x.

appTm : Tm
appTm = ň (ň (V 1 · V 0))

The main advantages of this approach are its simplicity and
its expressiveness. The expressiveness is almost maximal since no

restriction is put on the usage of variables. Actually expressiveness
is really maximal only in partial languages where all types are
inhabited by a looping term. Indeed the absence of restrictions
on data can be constraining when receiving data as argument.
In a total language all cases have to be covered, even those we
consider as impossible. For instance a function accepting only
closed terms will have to provide a return value for the variable
case anyway. Sometimes the return type is so constrained that the
type is actually empty in this case, and so no dummy value can be
returned. However, even in a partial language the expressiveness is
maximal if we are willing to live in an error monad.

1.4.2 Maybe: The nested data type approach
The nested data type approach [2, 3, 5] is a first step towards better
properties about the binding structure of terms. Let us start with the
definition of Tm with this approach:

data Tm (A : Set) : Set where
V : (x : A) → Tm A
_ ·_ : (t u : Tm A) → Tm A
ň : (t : Tm (Maybe A)) → Tm A
Let : (t : Tm A) (u : Tm (Maybe A)) → Tm A

There are three points to look at. The Tm type is parameterized
by another type called A, so we can look at it as a kind of container.
Note also that the variable case V does not hold a N but an A. Last
but not least the ň case holds a term whose parameter is not simply
an A but a Maybe A.

This last point makes the Tm type a nested data type, also
called a non-regular type. This has the consequence of requiring
polymorphic recursion to write recursive functions on such a type.

To understand why this is an adequate representation of λ-terms
one has to look a bit more at the meaning of Maybe. If types are
seen as sets, then Maybe takes a set and returns a set with one extra
element. So each time we cross a ň, there is one extra element
in the set of allowed variables, exactly capturing the fact we are
introducing a variable.

To see the difference with the previous approach, here is the
appTm λ-term again:

appTm : Tm ⊥
appTm = ň (ň (V (just nothing) · V nothing))

Note the use of the empty type ⊥ to state the closedness of the
appTm term. Stating this kind of properties was impossible to do
with the previous approach, without resorting to logical properties
on the side.

1.4.3 The Fin approach
Another approach already described and used in [1, 7] is to index
everything (terms for example) by a bound. This bound is the
maximum number of distinct free variables allowed in the value.
This rule is enforced in two parts: variables have to be strictly
lower than their bound, and the bound is incremented by one when
crossing a name abstraction (a λ-abstraction for instance, called ň
here).

The Fin n type is used for variables and represents natural
numbers strictly lower than n. The name Fin n comes from the
fact that it defines finite sets of size n. We call this approach Fin for
its use of this type. The definition found in AGDA standard library
is the following:

data Fin : N → Set where
zero : {n : N } → Fin (suc n)
suc : {n : N } (i : Fin n) → Fin (suc n)

Given this Fin type, one can define the Tm data type using this
approach:

data Tm n : Set where
V : (x : Fin n) → Tm n
_ ·_ : (t u : Tm n) → Tm n
ň : (t : Tm (suc n)) → Tm n
Let : (t : Tm n) (u : Tm (suc n)) → Tm n

As the previous approach, this representation helps enforcing
some wellformedness properties, for instance Tm 0 is the type of
closed λ-terms.

Here is the appTm λ-term in this approach:

appTm : Tm 0
appTm = ň (ň (V (suc zero) · V zero))

We can easily draw a link with the Maybe approach. Indeed,
the Fin (suc n) type has exactly one more element than the
Fin n type. Although they are not equivalent for at least two rea-
sons. The Maybe approach can accept any type to represent vari-
ables. This makes the structure more like a container and this can
be particularly helpful to define the substitution as the composi-
tion of mapTm : ∀{A B} → (A → B) → Tm A → Tm B and
joinTm : ∀{A} → Tm (Tm A) → Tm A as in [2, 5]. The Fin
approach has advantages as well, the representation is concrete and
simpler since closer to the bare approach. However this apparent
simplicity comes at a cost, we will see that its concrete representa-
tion is one root of the problem.

2. NAPA, a safer nameless representation
2.1 Motivation
While these nameless approaches easily guarantee wellformedness
of terms, nothing is said about functions manipulating terms. How
are the inputs of a function related to its output? What should a
function be able to do given unknown free variables? We claim that
free variables should be kept abstract. More precisely a function
f operating on terms should commute with a renaming Φ of free
variables, namely f◦Φ=Φ◦f . By renaming we mean a permutation
of the free variables (more precisely an injective function). In fact
this is a bit more flexible, depending on the type of the function f
this property will be enforced or not, as we will see in section 4.5.

The goal is to catch some programming errors by having finer
types for the manipulated values and for the functions manipulating
values. We will show later that this is not a restriction by itself since
the types do not force the programmer to be precise everywhere.

One common kind of programming error with these nameless
representations is to forget to shift the free variables here and there.
While these errors are already caught by the Maybe and the Fin
approaches, in these approaches the programmer is provided with
means to workaround the type error. In complex situations making
the distinction between a valid coercion and a wrong one can be
challenging. With finer types, the mistakes will result in more
informative type errors.

2.2 A data definition kit
The three previous approaches are closely related. Just a few de-
tails change each time. We can capture all of them with a single
abstraction: a triple (World, Name, _↑1) where World is the index

bareKit : DataKit
bareKit = 〈 > , λ _ → N , id 〉

maybeKit : DataKit
maybeKit = 〈 Set , id , Maybe 〉

finKit : DataKit
finKit = 〈 N , Fin , suc 〉

Figure 1. DataKits for the three previous approaches

of types like Tm, Name is the type for names (indexed by worlds) as
used in the V constructor, and finally _↑1 is an operation to shift a
world by one as used in the ň constructor.

In AGDA, this triple can be defined with a record type named
DataKit. This type is made universe polymorphic to accept the
nested data types approach.

record DataKit {`} : Set (suc `) where
constructor 〈_,_,_〉
field

World : Set `
Name : World → Set
_↑1 : World → World

The three previous approaches are summed up in figure 1 by
defining their DataKit. Note that for the bare approach the index
type is the unit type. In the Maybe approach the index type is Set
and the type for names is directly the index so we use the identity
function.

We can now give a single definition of Tm generalizing the three
previous ones. To this end, we simply take a DataKit as argument
and use it to define the type Tm.

module DataTm {`} (kit : DataKit {`}) where
open DataKit kit
data Tm α : Set ` where
V : (x : Name α) → Tm α
_ ·_ : (t u : Tm α) → Tm α
ň : (t : Tm (α ↑1)) → Tm α
Let : (t : Tm α) (u : Tm (α ↑1)) → Tm α

We claim that nothing more is required from the kit. As complex
binding structures can be defined in the original nameless represen-
tation (bare), they can also be defined using this kit. In particular
having an empty world or making an induction over a world is not
necessary.

Translation between data types using different kits can be done
modularly as we do in the AGDA development. In any direction
(any pair of kits k1 k2) one can define a function of type ∀ {α1 α2}
→ (Name k1 α1 → Name k2 α2) → Tm k1 α1 → Tm k2 α2. This
function takes a mapping for free variables and lifts this mapping
to terms.

Whereas using these translations is fine in many cases, when
going from bare to a more precise representation, an issue arises.
Since AGDA is a total language, the initial mapping must be a total
function. The bare approach ensuring nothing about free variables,
one cannot supply the initial mapping to go to a closed term. One
has to keep at least one free variable and then dynamically check
for occurrences of the free variable in a second transformation.

We will now build on this DataKit abstraction to introduce our
own solution.

World : Set
∅ : World
_+1 : World → World
_↑1 : World → World
Name : World → Set
⊆ : World → World → Set

napaKit : DataKit
napaKit = 〈 World , Name , _↑1 〉

Figure 2. Core types of NAPA

2.3 NAPA types
We call our approach NAPA as in Nameless, Painless. At the level
of types, NAPA exposes the interface shown in figure 2. This is a
superset of the DataKit, featuring an empty world, a _+1 operation
on worlds described later on, and a notion of world inclusion.

If we look closely at the notion of worlds in the Fin approach,
we see that it gives us too much information. Indeed a function
could look at the given world (by pattern-matching or induction)
and behave differently for some values of the world.

On the other hand, Fin worlds are too coarse: a single number
` is used to represent a set, namely the complete interval [0..`-1].

In NAPA, a world denotes a subset of N but is kept abstract (no
pattern-matching nor induction). Only the empty world ∅ and two
operations are given, namely _+1 and _↑1. Semantically α +1 is
defined by {x + 1 | x ∈ α} and α ↑ 1 by {0} ∪ (α +1).

Internally we represent worlds by lists of Boolean values. Hav-
ing true at the nth position of the list means that n is in the world.
Here are the AGDA definitions:

World : Set
World = List Bool

∅ : World
∅ = []

_+1 : World → World
α +1 = false :: α

_↑1 : World → World
α ↑1 = true :: α

These one step definitions _+1 and _↑1 are extended to any
number to produce _+W_ and _↑_ of type World → N → World.

To the best of our knowledge, making the distinction between
two forms of shifting operations for worlds has never been investi-
gated in the context of representing names and binders.

In NAPA the type for names is a refinement of N, kept abstract
by not exporting its definition. From a set point of view, inhabitants
of Name α are members of α. However we want worlds to form
static information only and to be able to erase them before running
the programs. To do so we will use a pair of a natural number and a
proof it belongs to its world. Here is the membership predicate and
the record definition for names:

zeroN : ∀ {α} → Name (α ↑1)
addN : ∀ {α} k → Name α

→ Name (α +W k)
subtractN : ∀ {α} k → Name (α +W k)

→ Name α
cmpN : ∀ {α} ` → Name (α ↑ `)

→ Name (∅ ↑ `)
] Name (α +W `)

==N : ∀ {α} (x y : Name α) → Bool

coerceN : ∀ {α β} → α ⊆ β
→ Name α → Name β

¬ Name∅ : ¬ (Name ∅)

syntax addN k x = x +N k

syntax subtractN k x = x -N k

syntax cmpN ` x = x <N `

Figure 3. Core operations on names

∈ : N → World → Set
_ ∈ [] = ⊥
zero ∈ (false :: _) = ⊥
zero ∈ (true :: _) = >
suc n ∈ (_ :: xs) = n ∈ xs

record Name α : Set where
constructor _,_
field
name : N
name∈α : name ∈ α

Thanks to our definition of world membership which is canoni-
cal, equality of the name field implies equality on whole Name val-
ues. This means we get provable proof-irrelevance for the Name
type without requiring an additional axiom.

2.4 Operations on names
The core operations on names are given in figure 3. The simplest
name is zeroN, it represents 0 and lives in any world shifted by
one. One can add any constant to a name in any world with addN,
the resulting world clearly shows that this function (if parametric
in α) does exactly its job. One can do the opposite operation with
subtractN. Thanks to its precise type this function is total and
the inverse of addN. Figure 4 depict the core operations we have
on names. Starting from the bottom, worlds of the form ∅ ↑ k
are names which are definitely bound. There value is completely
known as stated by arrows with the Fin k type. Above we have
names that may be bound or free (Name (α ↑ k)), a dynamic test
(cmpN) can tell whether it is bound or not. Above we have names
that are known to be greater than k (Name (α +W k)), apart from
that they are free names. Above we have free names (Name α). On
the top we have impossible names since they are said to belong to
an empty world. From them we can derive everything.

Given any world α, a name in the world α ↑ ` is either strictly
lower than ` (and so also lives in ∅ ↑ `), or greater or equal to `
(thus also lives in α +W `). This is exactly what the cmpN function
is about. Given a name, it returns a disjoint sum of names which
can be read in two parts. It first gives which side of the disjoint sum
it stands, and second it gives a refined version of the input name.

The coerceN function will be described in length in the next
sub-section. The only way left to extract information from a name
in an arbitrary world is to compare it with another name for equality

Name (∅ +W k)

Name ∅

Name α

Name (α +W k)

Name (α ↑ k) cmpN

Name (∅ ↑ k) Fin k

coerceN _

¬Name∅ ◦ coerceN _

addN k subtractN k

coerceN _ (if ≥k)

coerceN _ (if <k)

Figure 4. Operations on names

with _==N_. Finally ¬Name∅ asserts that no name lives in the empty
world. In a total language this is of great use to tackle impossible
cases.

These primitives are enough to show an isomorphism between
Fin n and Name (∅ ↑ n). From this, every program involving Fin
can be translated into our system. This means that our system does
not restrict the programmer more than the Fin approach. However
as soon as one uses finer types than Name (∅ ↑ n), then fewer
“wrong programs” type-check and more properties hold as we will
see later.

2.5 A type for world inclusion witnesses
Having finer types also implies being able to give more types to
the same value. Then cheaply moving from different types is a
must. We call a function which has an output type different from
the input type and behaves as the identity a coercion. To capture
a great deal of coercions from a world α to a world β we focus
on the case where α is included in β. In NAPA a type _⊆_ is
introduced to witness the inclusion between two worlds. Then the
coerceN function turns a α ⊆ β into an identity function of
type Name α → Name β. Here is the coerceN function and its
alias _〈-because_-〉 which is useful to keep the code separated
from the typing/proof, in particular what is between the angle
brackets can be safely skipped.

coerceN : ∀ {α β} → α ⊆ β → Name α → Name β
coerceN α⊆β (x , x∈α) = (x , ⊆-sound α⊆β x x∈α)

infix 0 _〈-because_-〉
〈-because-〉 : ∀{α β}→ Name α → α ⊆ β → Name β
〈-because-〉 n pf = coerceN pf n

The inclusion relation also expresses the emptiness of a world
α by using α ⊆ ∅. We use this definition of emptiness as opposed
to an equality with the empty world for two reasons. First ∅ is
not the only empty world (∅ +1 is empty as well). Second hav-
ing world equalities would require new definitions and would be
heavy in comparison to the use of inclusions. Combining coerceN

and ¬Name∅ turns any contradiction on names into an inclusion
problem, reusing any automation done on this side.

¬ Name : ∀ {α} → α ⊆ ∅ → ¬ (Name α)
¬ Name α⊆∅ = ¬ Name∅ ◦ coerceN α⊆∅

⊆-refl : ∀{α}→ α ⊆ α

⊆-trans : ∀{α β γ}→ α ⊆ β → β ⊆ γ → α ⊆ γ

⊆-∅ : ∀{α}→ ∅ ⊆ α

⊆-∅+1 : ∅ +1 ⊆ ∅

⊆-↑1-↑1 : ∀{α β}→ α ⊆ β ↔ α ↑1 ⊆ β ↑1

⊆-+1-+1 : ∀{α β}→ α ⊆ β ↔ α +1 ⊆ β +1

⊆-+1-↑1 : ∀{α}→ α +1 ⊆ α ↑1

Figure 5. Rules for world inclusion

We expose the inclusion relation with a set of rules given in
figure 5. This states that the inclusion relation is reflexive, transi-
tive, and has the empty world as lowest element. The ⊆-∅+1 rule
states that ∅ +1 is empty. The inclusion is preserved both ways
by the contexts _↑1 and _+1. Finally _+1 can be weakened in
_↑1. This accounts for the fact that α ↑1 means {0} ∪ (α +1)
and so is a superset of α +1. This set of rules has been shown
sound according to a semantic definition of inclusion, namely
∀ x → x ∈ α → x ∈ β. On top of these base rules, we de-
rived others that we omit to define here but some are used in the
code.

Sometimes one has to build complex inclusion witnesses. While
inference would be of great effect here, we propose a modest syn-
tactic tool to build them, namely the ⊆-Reasoning module. It
gives access to the transitivity ⊆-trans in a style which focuses
more on the intermediate states of the reasoning rather than the
steps. The syntax is a list of worlds interleaved by inclusion wit-
nesses, with two � around the last world. There is one example
of its use in the following section. The code for ⊆-Reasoning is
given below for reference and can be safely skipped.

module ⊆-Reasoning where
infix 2 finally
infixr 2 _⊆ 〈_〉_

⊆ 〈〉_ : ∀ x {y z} → x ⊆ y → y ⊆ z → x ⊆ z
_ ⊆ 〈 x⊆y 〉 y⊆z = ⊆-trans x⊆y y⊆z

finally : ∀ x y → x ⊆ y → x ⊆ y
finally _ _ x⊆y = x⊆y

syntax finally x y x⊆y = x ⊆ 〈 x⊆y 〉� y �

2.6 Singleton worlds!
We said that our worlds denote finite subsets of N and are more
precise than in the Fin approach. Actually they can be as precise as
we wish, since any subset of N can be described by our operations
on worlds (∅, _+1, and _↑1). In particular they can be singleton
worlds. From singleton worlds we build singleton types for names:

Worlds : N → World
Worlds n = ∅ ↑1 +W n

Names : N → Set
Names = Name ◦ Worlds

_s : ∀ n → Names n
_s n = zeroN +N n

Singleton worlds not only exist, they are also preserved by our
two updating operations, namely addN and subtractN.

adds : ∀ {n} k → Names n → Names (k +N n)
adds {n} k x = addN k x
〈-because ⊆-assoc-+ ⊆-refl n k −〉

subtracts : ∀ {n} k → Names (k +N n) → Names n
subtracts {n} k x = subtractN k x
〈-because ⊆-assoc-+′ ⊆-refl n k -〉

3. Using NAPA: examples and advanced
operations

3.1 Some convenience functions
Here are a few functions built on top of the interface (without using
the concrete representation of names). sucN is addN 1 and sucN↑ is
a variant that includes a coercion from α +1 to α ↑1. The function
_N turns a number n into a name that inhabits any world with at
least n+1 consecutive binders.

sucN : ∀ {α} → Name α → Name (α +1)
sucN = addN 1

sucN↑ : ∀ {α} → Name α → Name (α ↑1)
sucN↑ = coerceN ⊆-+1↑1 ◦ sucN

_N : ∀ {α} n → Name (α ↑ suc n)
_N {α} n = zeroN +N n
〈-because α ↑1 +W n ⊆ 〈 ⊆-+-↑ n 〉

α ↑1 ↑ n ⊆ 〈 ⊆-exch-↑-↑ 1 n 〉�
α ↑ suc n � -〉

where open ⊆-Reasoning

We call `-bound, a name bound somewhere in the scope of `
binders. We call `-free, a name free for all ` binders. In other words,
a de Bruijn index is `-bound if it is strictly less than `; it is `-free
otherwise.

The exportName function tells whether a given name is `-
bound or `-free. In case the name is free, an exported version of it is
returned. This function forms the base case of exporting functions
like exportTm explained later on.

-- Partial functions from A to B
A →? B = A → Maybe B

exportName : ∀ {α} ` → Name (α ↑ `)
→? Name α

exportName ` x
with x <N `

... | inj1 _ = nothing

... | inj2 x′ = just (x′ -N `)

The function shiftName ` k pf shifts its argument by k if
this name is `-free, otherwise it leaves the `-bound name un-
touched. This function makes use of cmpN and coerces the outputs
to the required type. It also perform a coercion on the fly, giving
extra flexibility for free.

shiftName : ∀ {α} ` k → (α +W k) ⊆ β
→ Name (α ↑ `)
→ Name (β ↑ `)

shiftName ` k pf x
with x <N `
... | inj1 x′ = x′

〈-because pf1 -〉
... | inj2 x′ = x′ +N k

〈-because pf2 -〉
where
pf1 = ⊆-cong-↑ ⊆-∅ `
pf2 = ⊆-trans (⊆-exch-+-+ ⊆-refl ` k)

(⊆-ctx-+↑ pf `)

The protect↑ function shifts a name transformer. Let f be
a function from names to names. The function protect↑ ` f
is a version of f that is applicable under ` binders. Let x be a
name under ` binders. When x is `-bound, it is left untouched
by protect↑. When x is `-free, we can subtract ` to x, give it
to f, and then add ` to get the result. By combining protect↑
and addN one obtain an alternative implementation of shiftName
called shiftName′. However shiftName is more efficient since it
avoids to subtracting ` to add it back after adding k.

protect↑ : ∀ {α β} `
→ (Name α → Name β)
→ (Name (α ↑ `) → Name (β ↑ `))

protect↑ ` f x
with x <N `
... | inj1 x′ = x′

〈-because ⊆-cong-↑ ⊆-∅ ` -〉
... | inj2 x′ = f (x′ -N `) +N `

〈-because ⊆-+-↑ ` -〉

shiftName′ : ∀ {α β} ` k → (α +W k) ⊆ β
→ Name (α ↑ `) → Name (β ↑ `)

shiftName′ ` k pf = protect↑ (coerceN pf ◦ addN k) `

3.2 Building terms
Building terms in NAPA is as easy as building them in the other
nameless approaches we have seen. The structure is exactly the
same, and the variables are made of numbers (of type N) using
_N. Below we define the representation of the identity function as
idTm, the application operator as appTm and finally the composi-
tion function as compTm:

idTm : ∀ {α} → Tm α
idTm = ň(V (0 N))

appTm : ∀ {α} → Tm α
appTm = ň(ň(V (1 N) · V (0 N)))

compTm : ∀ {α} → Tm α
compTm = ň(ň(ň(V (2 N)) · (V (1 N) · V (0 N)))))

3.3 Computing free variables
Our first example of functions over terms simply computes the list
of free variables in the input term. The fv function below, while
straightforward, has the subtle cases of binding constructs (ň and
Let). In these cases we have to remove the bound variable from
the list of free variables given by the recursive call. In this name-
less representation this amounts to removing occurrences of 0 and
subtract 1 to other name occurrences. This is done by the function
rm0| which calls {agda|exportName 1 on each element of the
list and merges the results. Note that forgetting to remove the bound
variable will result in a type error. In the same vein the typing of fv
ensures that all returned variables do appear free in the given term.

rm0 : ∀ {α} → List (Name (α ↑1))
→ List (Name α)

rm0 [] = []
rm0 (x :: xs) with exportName 1 x
... | just x’ = x’ :: rm0 xs
... | nothing = rm0 xs

fv : ∀ {α} → Tm α → List (Name α)
fv (V x) = [x]
fv (fct · arg) = fv fct ++ fv arg
fv (ň t) = rm0 (fv t)
fv (Let t u) = fv t ++ rm0 (fv u)

3.4 Generic traversal
In order to build multiple traversal functions at once, we first define
a generic function based on ideas from [8]. It is essentially a
map/subst function where the free variables are transformed by a
user-supplied function. Moreover a class of effects (an applicative
functor) is allowed during the traversal. An applicative functor
is halfway between a functor and a monad. Like a monad, an
applicative functor has a unit called pure. It allows to embed any
pure value as a potentially effectful one. The second operation
called _⊗_ is an effectful application, taking both an effectful
function and argument and resulting in an effectful result.

module TraverseTm
{E} (E-app : Applicative E)
{α β} (trName : ∀ ` → Name (α ↑ `)

→ E (Tm (β ↑ `)))
where
open Applicative E-app

tr : ∀ ` → Tm (α ↑ `) → E (Tm (β ↑ `))
tr ` (V x) = trName ` x
tr ` (t · u) = pure _ ·_ ⊗ tr ` t ⊗ tr ` u
tr ` (ň t) = pure ň ⊗ tr (suc `) t
tr ` (Let t u) = pure Let ⊗ tr ` t

⊗ tr (suc `) u

trTm : Tm α → E (Tm β)
trTm = tr 0

To put this traversal at work we successively instantiate some
of its arguments. For instance you may have noticed the special
case we made for variables. Mapping names to terms will bring us
capture avoiding substitution almost for free. However, in the mean
time we build trTm′ which maps names to names. It does so by
applying pure V to the name to name function:

open TraverseTm

trTm′ :
∀ {E} (E-app : Applicative E) {α β}

(trName : ∀ ` → Name (α ↑ `)
→ E (Name (β ↑ `)))

→ Tm α → E (Tm β)
trTm′ E-app trName

= trTm E-app (λ ` x → pure V ⊗ trName ` x)
where open Applicative E-app

Renaming functions In many functions over terms the han-
dling of variables shares a common part. Given a variable under
` binders, we test if the variable is `-bound. If so we leave it un-
touched, otherwise we subtract ` and go on a specific process-
ing after which we add ` again to the free variables of the result.
The traversal function is augmented by this processing of bound
variables to build renameTmA. Then by picking either the identity
functor (id-app), or the Maybe one we build two functions (a total
and a partial one) to perform renamings, namely renameTm and
renameTm?:

renameTmA : ∀ {E} (E-app : Applicative E)
{α β} (θ : Name α → E (Name β))

→ Tm α → E (Tm β)
renameTmA E-app θ

= trTm′ E-app (protect↑A E-app θ)

renameTm : ∀ {α β} → (Name α → Name β)
→ Tm α → Tm β

renameTm θ = trTm′ id-app (protect↑ θ)
-- or
-- renameTm = renameTmA id-app

renameTm? : ∀ {α β} → (Name α →? Name β)
→ Tm α →? Tm β

renameTm? = renameTmA Maybe.applicative

Lifting name functions Any operation on names can now be
lifted to terms:

addTm : ∀ {α} k → Tm α → Tm (α +W k)
addTm = renameTm ◦ addN

subtractTm : ∀ {α} k → Tm (α +W k) → Tm α
subtractTm = renameTm ◦ subtractN

exportTm? : ∀ {α} ` → Tm (α ↑ `) →? Tm α
exportTm? = renameTm? ◦ exportName

While coerceN can be lifted to terms in the same way, using
trTm′ directly enables to by-pass the protect↑ dynamic tests
and directly “protect” the inclusion witness with an appropriate
inclusion rule.

coerceTm : ∀ {α β} → α ⊆ β → Tm α → Tm β
coerceTm pf = trTm′ id-app (coerceN ◦ ⊆-cong-↑ pf)
-- or less efficiently:
-- coerceTm = renameTm ◦ coerceN

Lifting addN to terms can be done more efficiently (than using
protect↑) as well. Here the dynamic test performed by protect↑
is necessary. However when the name is `-free we subtract ` to add
it back after adding k. The function shiftName avoids this extra
computation, hence the following shiftTm:

shiftTm : ∀ {α β} k → (α +W k)⊆ β → Tm α → Tm β
shiftTm k p = trTm′ id-app (λ ` → shiftName ` k p)
-- or less efficiently:
-- shiftTm k pf = renameTm (coerceN pf ◦ addN k)

A special case of renameTm? is the so-called closeTm?. This
function takes a term in any world and checks if the term is closed.
If so, the same term is returned in the empty world. Otherwise the
function fails by returning nothing:

closeTm? : ∀ {α} → Tm α →? Tm ∅
closeTm? = renameTm? (const nothing)

Capture avoiding substitution To implement capture avoiding
substitution for the Tm type we solely need a specific trName
function for trTm. Here substitutions are represented as functions
from names to terms. The function substVarTm handles the case
for variables. This function is very close to protect↑ but extended
to functions returning terms.

substVarTm : ∀{α β} → (Name α → Tm β) →
∀ ` → Name (α ↑ `) → Tm (β ↑ `)

substVarTm f ` x
with x <N `
... | inj1 x′ = V (x′

〈-because ⊆-cong-↑ ⊆-∅ ` -〉)
... | inj2 x′ = shiftTm ` (⊆-+-↑ `) (f (x′ -N `))

The main function substTm instantiates trTm with the identity
applicative functor and substVarTm:

substTm : ∀ {α β} → (Name α → Tm β)
→ Tm α → Tm β

substTm = trTm id-app ◦ substVarTm

As an illustration, the function β-red takes the body of a λ-
abstraction and calls substTm with the substitution that replaces 0
with a received replacement term:

β-red : ∀ {α} → Tm (α ↑1) → Tm α → Tm α
β-red {α} f a = substTm (φ ◦ exportName 1) f

where φ : Maybe (Name α) → Tm α
φ (just x) = V x
φ nothing = a

3.5 Deciding term α-equivalence
Our next example focuses on comparison of terms. We first define
αEq, where αEq F is the type of functions comparing F structures.

αEq : (F : World → Set) (α β : World) → Set
αEq F α β = F α → F β → Bool

We show that all the subtle work is done at the level of names
in a separate and reusable function called αeqName. This function
takes a function that compares two free names and builds one that
compares two names under ` bindings. It does so by comparing
both of them to `. If they are both bound they can be safely
compared using _==N_ since they now are of the same type. If they

are both free, they can be compared using the function received as
argument. Otherwise they are different.

αeqName : ∀ {α β} ` → αEq Name α β
→ αEq Name (α ↑ `) (β ↑ `)

αeqName ` Γ x y with x <N ` | y <N `
... | inj1 x′ | inj1 y′ = x′ ==N y′

... | inj2 x′ | inj2 y′ = Γ (x′ -N `) (y′ -N `)

... | _ | _ = false

The αeqTm function structurally compares two terms in a sim-
ple way, only keeping track of the number of traversed binders and
calling αeqName at variables.

αeqTm : ∀ {α β} → αEq Name α β → αEq Tm α β
αeqTm {α} {β} Γ = go 0 where

go : ∀ ` → αEq Tm (α ↑ `) (β ↑ `)
go ` (V x) (V y) = αeqName ` Γ x y
go ` (t · u) (v · w) = go ` t v ∧ go ` u w
go ` (ň t) (ň u) = go (suc `) t u
go ` (Let t u) (Let v w) = go ` t v

∧ go (suc `) u w
go _ _ _ = false

4. Soundness using logical relations
Since our library is written in a type-safe language, one may won-
der what soundness properties are to be proved. Moreover our
names are indexed by worlds and hold membership proofs. The
functions over names are given precise types and have been shown
to be type-safe. However we still wish to show that our library re-
spects a model of good behavior with respect to names and binders.
Our model is based on logical relations indexed/directed by types.
This technique [4] is independent of this work and enables to define
a notion of program equivalence. We use this technique to capture
good behavior of functions involving names and binders. Using this
technique, the set of specific definitions is kept to a minimum of one
per introduced type (World, Name, and _⊆_). One proof per value
introduced has to be done, which keeps the development modular
and forward-compatible to the addition of more features.

This section is organized as follows. First we recall the basics of
logical relations. Then we give a toy example to practice a bit. Then
relations for worlds, names, and world inclusions are given. Finally
we make use of the construction to obtain free theorems [12] about
world-polymorphic functions over the Tm type.

4.1 Recap of the framework
A relation is said to be type-directed when it is recursively defined
on the structure of types. Let R be such a type-directed relation,
and let τ be a type. Then, Rτ is a relation on values of type τ ,
namelyRτ : τ → τ → Set. Recall that Set is also the type of
propositions in AGDA.

A type-directed relation is called “logical” when the case for
functions is defined extensionally. Here extensionally means that
two functions are related when they produce related results out of
related arguments. Let Ar be a relation for the arguments and Br a
relation for results. Two functions f1 and f2 are related if and only
if for every pair of arguments (x1, x2) related by Ar , the results
f1 x1 and f2 x2 are related by Br . This definition can be given in
AGDA as well:

RelatedFunctions Ar Br f1 f2 =
∀ {x1 x2} → Ar x1 x2

→ Br (f1 x1) (f2 x2)

We say that a program or a value fits a logical relation when it
is related to itself by the relation indexed by its type. We say that
a logical relation is universal if every well-typed program fits the
logical relation. This notion of universality was originally coined
by John Reynolds as the “Abstraction Theorem” [11]. We call the
“AGDA logical relation” the one defined by Bernardy et al. [4] for
a PT S (pure type system) and naturally extended as they suggest
to other features of AGDA. While no complete mechanized proof
has been done for this we will consider the AGDA logical relation
as universal.

To simplify matters, the definitions shown here are not universe
polymorphic. You can find universe-polymorphic definitions in our
complete AGDA development [9].

To formally define a logical relation indexed by types, a com-
mon technique is to first inductively define the structure of types.
This is known as a “universe of codes” U. Then one defines a
function called El from codes to types. Finally one defines by in-
duction a function called J_K from codes to relations on elements
of type described by the given code. In AGDA the J_K function
has the following type: (τ : U) → El τ → El τ → Set. Be-
cause, when types contain variables, a good deal of complexity is
added to this scheme, we opt for a lighter scheme. We do not define
U, El, and J_K.

Instead, for each type constructor κ, we define a relation
JκK For the function type constructor the RelatedFunctions
definition above is a good start. Actually this is a fine defi-
nition for non-dependent functions. The dependent version of
RelatedFunctions, called JΠK here, passes the relation argu-
ment Ar x1 x2 called xr to the relation for results Br . In short the
relation for results now depends on the relation for arguments. Here
is the definition in AGDA:

JΠK Ar Br f1 f2 = ∀ {x1 x2} (xr : Ar x1 x2)
→ Br xr (f1 x1) (f2 x2)

Note that this definition generalizes the case of non-dependent
functions and universal quantifications as well. For non-dependent
functions we simply provide a relation for results which ignores
its first argument (equivalent to RelatedFunctions and noted
J→K from now on). For universal quantifications, since the ar-
guments are types, all we need is a relation for types (members of
Set0) themselves. Following our convention we call this relation
JSet0K, its definition is the set of relations between its arguments:

JSet0K : Set0 → Set0 → Set1
JSet0K A1 A2 = A1 → A2 → Set0

For reference, full definitions for core type theory are given in
figure 6. We now have all the building blocks of the meta-function
J_K and we will not materialize it more here. We will apply the J_K
function manually. To this end it suffices to replace each construc-
tor κ by JκK, each non dependent arrow by J→K, each dependent
arrow (x : A) → B by 〈 xr : J A K 〉J→K J B K. By conven-
tion we subscript the variables by r. Applications are translated to
applications. Because of dependent types, this translation has to be
extended to all terms but we will not do it here. Finally here are a
few examples of the manual use of the J_K function:

J N → N → Bool K =
J N K J→K J N K J→K JBoolK =
λ f1 f2 →
∀ {x1 x2} (xr : J N K x1 x2)
{y1 y2} (yr : J N K y1 y2)

→ JBoolK (f1 x1 y1) (f2 x2 y2)

data J⊥K : JSet0K ⊥ ⊥ -- no constructors

data JBoolK : JSet0K Bool Bool where
JtrueK : JBoolK true true
JfalseK : JBoolK false false

data J N K : JSet0K N N where
JzeroK : J N K zero zero
JsucK : (J N K J→K J N K) suc suc

data _J] K_ {A1 A2 B1 B2} (Ar : JSet0K A1 A2)
(Br : JSet0K B1 B2) :

A1] B1 → A2] B2 → Set0 where
Jinj1K : (Ar → Ar J] K Br) inj1 inj1
Jinj2K : (Br → Ar J] K Br) inj2 inj2

Figure 7. Logical relations for data types

J (A : Set0) → A → A K =
JΠK JSet0K (λ Ar → Ar J→K Ar) =
λ f1 f2 →
∀ {A1 A2} (Ar : A1 → A2 → Set0)
{x1 x2} (xr : Ar x1 x2)

→ Ar (f1 A1 x1) (f2 A2 x2)

-- Using the notation instead of JΠK:
J (A : Set0) → List A K =
〈 Ar : JSet0K 〉J→K JListK Ar =
λ l1 l2 →
∀ {A1 A2} (Ar : A1 → A2 → Set0)
→ JListK Ar (l1 A1) (l2 A2)

We now have the definition of the AGDA logical relation for
the core type theory part. It extends nicely to inductive data types
and records. The process is as follows: for each constructor κ of
type τ , declare a new constructor JκK whose type is J τ K κ κ.
This process applies to type constructors and data constructors
of data types, and type constructors and fields of record types.
For reference, the logical relations for data types we use in this
development are in figure 7.

4.2 An example: booleans represented by numbers
We wish to explain how logical relations can help build a safe in-
terface to an abstract type. To do so we introduce a tiny example
about booleans represented using natural numbers. We want 0 to
represent false and any other number to represent true. There-
fore the boolean disjunction can be implemented using addition.
We show that logical relations help build a model, ensure that a
given implementation respects this model, and finally show that a
client that uses only the interface will also respect the model.

Note however that this is a toy example in several ways. There
are no polymorphic functions in the interface, so no interesting
free theorems are to be expected. While we could prove the safety
by defining a representation predicate in unary style, the logical
relations approach is different. It relies on comparing concrete data
as opposed to mapping to abstract data. The unary construction
would allow for a simpler construction, however this oversimplifies
the problem here and would be no longer useful for proving NAPA.

Our tiny implementation of booleans using natural numbers is
given below. It contains a type B that we want to keep abstract. It
contains obvious definitions for true, false, and the disjunction

JSet0K : ∀ (A1 A2 : Set0) → Set1
JSet0K A1 A2 = A1 → A2 → Set0

JSet1K : ∀ (A1 A2 : Set1) → Set2
JSet1K A1 A2 = A1 → A2 → Set1

J→K : ∀ {A1 A2 B1 B2} → JSet0K A1 A2 → JSet0K B1 B2 → JSet0K (A1 → B1) (A2 → B2)
Ar J→K Br = λ f1 f2 → ∀ {x1 x2} → Ar x1 x2 → Br (f1 x1) (f2 x2)

infixr 0 _J→K_

JΠK : ∀ {A1 A2} (Ar : JSet0K A1 A2)
{B1 B2} (Br : (Ar J→K JSet0K) B1 B2)

→ ((x : A1) → B1 x) → ((x : A2) → B2 x) → Set1
JΠK Ar Br = λ f1 f2 → ∀ {x1 x2} (xr : Ar x1 x2) → Br xr (f1 x1) (f2 x2)

syntax JΠK Ar (λ xr → f) = 〈 xr : Ar 〉J→K f

J∀K : ∀ {A1 A2} (Ar : JSet0K A1 A2)
{B1 B2} (Br : (JSet0K J→K JSet0K) B1 B2)

→ JSet1K ({x : A1} → B1 x) ({x : A2} → B2 x)
J∀K Ar Br = λ f1 f2 → ∀ {x1 x2} (xr : Ar x1 x2) → Br xr (f1 {x1}) (f2 {x2})

syntax J∀K Ar (λ xr → f) = ∀〈 xr : Ar 〉J→K f

Figure 6. Logical relations for core types

∨. It intentionally has a dubious function is42? which breaks
our still informal expectations from such a module.

B : Set
B = N

false : B
false = 0

true : B
true = 1

_∨ _ : B → B → B
m ∨ n = m + n

is42? : B → B
is42? 42 = true
is42? _ = false

The next step is to define our expectations. To do so, we give
a binary relation which tells when two B values have the same
meaning. We do so with an (inductive) data type named JBK which
states that 0 is related only with itself, and that any two non zero
numbers are related:

data JBK : B → B → Set where
JfalseK : JBK 0 0
JtrueK : ∀ {m n} → JBK (suc m) (suc n)

When plugged into the machinery of logical relations this sin-
gle definition suffices to define a complete model of well-typed
programs. However, the plumbing requires some care. While the
AGDA logical relation is universal, we have no such guarantee
about the AGDA logical relation where the relation for B is no

longer JNK but JBK. Fortunately changing the relation at a given
type (B here) can be done safely. All we have to do is to consider
programs abstracted away from B and its operations: true, false
and _∨_. This can be done either through a mechanism for abstract
types, or by requiring the client to be a function taking the imple-
mentation for B and its operations as argument.

However to use JBK as the relation for B, we have to show that
the definitions which make use of the representation of B actually
fit the relation. Since JtrueK and JfalseK are obvious witnesses
for true and false, only _∨_ and is42? are left to be proved.
Each time the goal to prove is mechanical: wrap the type with J·K
on each constructor and put the name of the function twice to state
we want it to be related to itself. Here is the definition for _J∨K_:

J ∨ K : (JBK J→K JBK J→K JBK) _∨ _ _∨ _

The type of _J∨K_ means that given inputs related in the model,
the results are related in the model as well. Once unfolded the type
looks like:

J ∨ K : ∀ {x1 x2} (xr : JBK x1 x2)
{y1 y2} (yr : JBK y1 y2)

→ JBK (x1 ∨ y1) (x2 ∨ y2)

The fact that input arguments come as implicit arguments will
greatly shorten definitions. Now, thanks to the inductive definition
of _+_, simply pattern-matching on the first relation suffices to
reduce the goal, and allows this nice looking definition where we
see the usual lazy definition of the left biased disjunction:

JfalseK J ∨ K x = x
JtrueK J ∨ K _ = JtrueK

Let us now consider a proof for the is42? function. Fortunately
there is no such proof since this function gladly breaks the intended
abstraction. Instead we simply prove its negation by exhibiting that

given two related inputs (42 and 27) we get non related outputs
(is42? 42 = 1 and is42? 27 = 0).

¬ Jis42?K : ¬ ((JBK J→K JBK) is42? is42?)
¬ Jis42?K Jis42?K with Jis42?K {42} {27} JtrueK
... | () -- absurd

Note that is42? is rejected by our model with no considerations
about the other exported functions. Indeed with another implemen-
tation of _∨_ there would be no way to produce 42 and so no way
to expose the wrong behavior of is42? using the interface. Using
a model provides a better forward compatibility and enables proofs
to be done in a modular way.

4.3 Relations for NAPA

For NAPA, we apply the same process as with booleans. We define
our expectations, by defining relations for introduced types (worlds,
names, and inclusions). Finally we prove that each value/function
exported fits the relation.

4.3.1 Relations for NAPA types
Valid names are those which belong to their worlds, names with
the same meaning are those related by the relation between their
worlds. What matters is not just the fact that two worlds are related,
but “how” they are related. Indeed this will dictate when two names
are related. We need to define a set of valid relations between
worlds. The more relations are accepted, the more power it gives
to the free theorems of world-polymorphic functions. However we
want the equality test on names to be accepted. Thus we at least
need the relation to preserve name equalities across the relation
in both directions. We require these relations to be functional and
injective:

FunctionalAndInjective R =
∀ x1 y1 x2 y2 → R x1 x2 → R y1 y2

→ x1 ≡ y1 ↔ x2 ≡ y2

The relation JWorldK between two worlds α1 and α2 is the
set of functional and injective relations between Name α1 and
Name α2. Then, two names x (in α1) and y (in α2) are related by
JNameK αr if and only if they are related by the αr relation.

For the _J⊆K_ relation, we exploit the fact there is only one way
to use an inclusion witness, namely coerceN. Thus, for the pur-
pose of building the model, we identify inclusions with their use in
coerceN. Put differently, whatever the representation for inclusions
is, the model takes them as functions from names to names. Yet an-
other way to look at it is from the perspective of relation inclusions.
A relation R1 is included in a relation R2 if and only if all pairs
related byR1 are related byR2 as well. The coerceN function be-
having like the identity function all these definitions coincide. For
instance if we expand the definitions for JNameK and J→K, we get
the definition for relation inclusion modulo the coercions:

J⊆ K αr βr p1 p2
= ∀ {x1 x2} → (x1 , x2) ∈ αr

→ (coerceN p1 x1 , coerceN p2 x2) ∈ βr

We now have to define operations on worlds that fit the log-
ical relation. The case for J∅K is trivial. Then αr J+1K is de-
fined by { (x+1, y+1) | (x, y) ∈ αr } and αr J↑1K is defined
by {(0, 0)} ∪ αr J+1K . We shown that both operations preserve
functionality and injectiveness. Here are the signatures that these
operations fit the relation:

record JWorldK α1 α2 : Set where
constructor _,_
field
R : Name α1 → Name α2 → Set
R-fun-inj : FunctionalAndInjective R

JNameK : (JWorldK J→K JSet0K) Name Name
JNameK (R , _) x1 x2 = R x1 x2

J⊆ K : (JWorldK J→K JWorldK J→K JSet0K)
⊆ _⊆_

J⊆ K αr βr α1⊆β1 α2⊆β2
= (JNameK αr J→K JNameK βr) (coerceN α1⊆β1)

(coerceN α2⊆β2)

Figure 8. Relations for NAPA types

J∅K : JWorldK ∅ ∅
_J+1K : (JWorldK J→K JWorldK) _+1 _+1
_J↑1K : (JWorldK J→K JWorldK) _↑1 _↑1

4.3.2 NAPA values fit the relation
We now give a short overview of the proofs needed to show that our
functions fit the relation. Thanks to the definition of _J↑1K, zeroN

fits the relation by definition. Thanks to the definition of _J+1K,
addN 1 and subtractN 1 fit the relation as well. These two are
later extended to addN k and subtractN k by an induction on
k. Since J¬Name∅K receives names in the empty world, it trivially
holds. Here is for instance the type signature for JaddNK:

JaddNK : (∀〈 αr : JWorldK 〉J→K
〈 kr : J N K 〉J→K
JNameK αr J→K
JNameK (αr J+WK kr)) addN addN

For _J==NK_, once unfolded, the statement tells that the equality
test commutes with a renaming. This means that the result of
the equality test does not change when its inputs are consistently
renamed. The proof for _J==NK_ is done in two parts. First, we have
to relate the Boolean-valued function _==N_ to the fact it decides
equality on names. Second, we make use of the two properties
(functionality and injectiveness) of the relation between the two
worlds.

The definition of cmpN is not a simple induction on its first
argument. It calls _<=_ (which does an induction) and returns a
Boolean value. Based on this Boolean value, the function cmpN

returns either inj1 or inj2 (the constructors of _]_) with the
same name (with a different proof). To prove _JcmpNK_ we show
the equivalence with a simpler inductive function and show that
this simpler function is in the relation. Thanks to the extensionality
of the logical relation, no additional axiom is required to show that
cmpN fits the relation.

Thanks to the definition of _J⊆K_, the proof that coerceN fits
the relation is a simple application of the hypotheses. Then the real
job is to show that all the inclusion rules fit the relation. This means
that they all behave as the identity function. All eleven rules stated
in figure 5 have been shown to fit the relation.

4.4 On the strength of free theorems
Every well-typed function comes with a free theorem [12]. How-
ever depending on the type of the function the strength of the the-
orem varies a lot. For instance at type Int → Bool it says no
more than the function is deterministic. At type ∀{A : Set} →
A → A it says that the function behaves like the identity function,
which is much stronger. We now give a few elements of what can
affect the strength of free theorems in our context. We will continue
to use our Tm type to represent some data structures with names and
binders but it could be any other.

Various term types The weakest type we can give to a value with
names and binders is Tm (∅ ↑ `) for a given `. Such a term can
have a statically unknown number of distinct free variables, but we
know that these variables are comprised in the interval [0 .. `-1].
The free theorem of ∀{`} → Tm (∅ ↑ `) → Tm (∅ ↑ `) says
no more than “the function is deterministic”. We also know because
of typing that the resulting term cannot have `-free occurrences.

A stronger type is to use any world instead of the empty world,
but still have a known amount of bindings. A function of type
∀{α `} → Tm (α ↑ `) → Tm (α ↑ `) has a stronger free the-
orem. It says that the function commutes with a renaming of the
variables in the world α (section 4.5). This is a common type
to deal with open terms under a partial environment: ∀{α `} →
Vec Info ` → Tm (α ↑ `) → Tm (α ↑ `).

The strongest type for terms is to make no assumptions on
their free variables. This can be done by quantifying by an arbi-
trary world. The free theorem associated with the type ∀ {α} →
Tm α → Tm α says that the function commutes with renamings
of the free variables. This particular type is studied in detail in the
section 4.5.

Extra arguments Note that adding extra arguments to a func-
tion can drastically affect the strength of its free theorem. An ex-
treme example is the type ∀{α} → (α ≡ ∅) → Tm α → Tm α,
which is ruined by its α ≡ ∅ argument. While the above exam-
ple is extreme, this is an important point to watch out for when
adding extra arguments to a function. Another example is the
type ∀{α β} → Tm α → Tm β → Tm β versus ∀{α β} →
(Name α → Name β → Bool)→ Tm α → Tm β → Tm β, the
first one cannot compare the free variables of the two given terms
while the second can apply a user-supplied function to do so.

Shifting versus adding Last but not least using +W instead of ↑
significantly improves the strength of the associated free theorem.
Consider the function:

protectedAdd : ∀ {α} ` k → Name (α ↑ `)
→ Name (α +W k ↑ `)

protectedAdd ` k = protect↑ ` (addN k)

Consider now a weaker type, namely:

protectedAdd↑ : ∀ {α} ` k → Name (α ↑ `)
→ Name (α ↑ k ↑ `)

protectedAdd↑ ` k = protect↑ ` (addN↑ k)

We simply replaced the occurrence of +W by ↑. The conse-
quences of this change are disastrous: this type allows more be-
haviors for its functions. Indeed the addN k function can be given
the latter type (but not the former) when using the appropriate in-
clusion witness to exploit the commutativity of ↑:

unprotectedAdd : ∀ {α} ` k → Name (α ↑ `)
→ Name (α ↑ k ↑ `)

unprotectedAdd ` k
= coerceN (⊆-exch-↑-↑′ ` k) ◦ addN↑ k

In our previous work [10] we had only the ↑ operation. Our
function shiftName (protectedAdd in this example) was defined
with the unprotectedAdd behavior. It took us a long time to
discover this mistake, since we thought that our logical relation
argument was enough. In summary we want to emphasis that all
the logical relations proofs have to be taken with great care. A
weaker function type than expected can ruin the intended informal
properties.

4.5 Using logical relations and parametricity
To formally show that a world-polymorphic function f of type
∀ {α} → Tm α → Tm α commutes with a renaming of the free
variables, we proceed as follows. First we recall the natural defini-
tion of logical relation on the type Tm. Second we present the type
Ren of renamings as injective functions. Third renaming is shown
equivalent to being related at the type Tm. Finally we prove our
commutation lemma by using the free-theorem associated to the
function f.

The logical relation for the type Tm is mechanical. It states that
two terms are related if they have the same structure and related
free variables:

data JTmK {α1 α2} (αr : JWorldK α1 α2) :
Tm α1 → Tm α2 → Set where

JVK : ∀ {x1 x2} (xr : JNameK αr x1 x2)
→ JTmK αr (V x1) (V x2)

J · K : ∀ {t1 t2 u1 u2}
(tr : JTmK αr t1 t2)
(ur : JTmK αr u1 u2)

→ JTmK αr (t1 · u1) (t2 · u2)
JňK : ∀ {t1 t2} (tr : JTmK (αr J↑1K) t1 t2)

→ JTmK αr (ň t1) (ň t2)
JLetK : ∀ {t1 t2 u1 u2}

(tr : JTmK αr t1 t2)
(ur : JTmK (αr J↑1K) u1 u2)

→ JTmK αr (Let t1 u1) (Let t2 u2)

Then we need a notion of renaming. We choose to use injec-
tive functions over names. The type for a renaming is Ren, and the
functions 〈_〉 and 〈〈_〉〉 respectively convert a renaming to a func-
tion over names, and to a relation over worlds:

Ren : (α β : World) → Set

〈_〉 : ∀ {α β} → Ren α β → Tm α → Tm β

〈〈_〉〉 : ∀ {α β} → Ren α β → JWorldK α β

We now observe that given a renaming Φ, it is equivalent for
two terms t1 and t2 to be related by JTmK 〈〈 Φ 〉〉 and for t2 to be
equal to t1 renamed with Φ.

JTmK⇔rename :
∀ {α β} (Φ : Ren α β) {t1 t2}
→ JTmK 〈〈 Φ 〉〉 t1 t2 ⇔ (〈 Φ 〉 t1) ≡ t2

Finally given a function f and a proof fr that f is in the logical
relation, we can show that any renaming Φ commutes with the
function f. To prove so we apply our JTmK⇔rename lemma in both
directions and use fr with the renaming Φ lifted as a JWorldK.

ren-comm :
(f : ∀ {α} → Tm α → Tm α)
(fr:(∀〈 αr : JWorldK 〉J→K JTmK αr J→K JTmK αr)f f)
→ ∀ {α β} (Φ : Ren α β)
→ 〈 Φ 〉 ◦ f $ f ◦ 〈 Φ 〉
ren-comm f fr Φ t

= JTmK⇒rename Φ
(fr 〈〈 Φ 〉〉 (rename⇒JTmK Φ ≡.refl))

5. Conclusion and future work
We have shown a new approach for a safer nameless programming
interface. Our work relies on a different notion of worlds both finer
and more abstract. The type of names while being represented as
a natural number is kept abstract as well. Only a few functions are
required from the interface to get complete expressiveness. Indeed
while our worlds are more precise, nothing forces the programmer
to be precise with them. Thus there is no loss of expressiveness
compared to the Fin approach. Through concrete examples we
have shown how we can program in this system using classical
examples like capture avoiding substitution. However the most
challenging result comes from the solid mechanized development
we have made in AGDA. This development not only demonstrates
the soundness of our approach but allows to derive properties of
functions using the system. This way we have shown that world-
polymorphic functions over terms commute with renamings of free
variables. These soundness results are shown in a modular way and
reuse the solid foundations of logical relations.

As future work we would like to explore more properties of
this system. We have also seen that a major convenience problem
in our system was to build world inclusion witnesses. We would
like to address this problem through a witness inference system
built within AGDA, using the recent reflection mechanism. Another
time-consuming task was to apply the AGDA logical relations to
types and operations, so we would like to explore the integration of
inspection primitives and meta-programming facilities for AGDA,
namely TEMPLATE AGDA. Finally we would like to investigate
how this system could scale to representations of well-typed terms.

Acknowledgements Thanks to François Pottier, Jean-Philippe
Bernardy, Alexandre Pilkiewicz, and the anonymous reviewers for
providing us with very valuable feedback.

References
[1] Thorsten Altenkirch. A formalization of the strong normalization

proof for System F in LEGO. In J.F. Groote M. Bezem, editor, Typed
Lambda Calculi and Applications, LNCS 664, pages 13 – 28, 1993.

[2] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of
lambda terms using generalized inductive types. In Computer Science
Logic, volume 1683 of Lecture Notes in Computer Science, pages 453–
468. Springer, 1999.

[3] Françoise Bellegarde and James Hook. Substitution: A formal meth-
ods case study using monads and transformations. Sci. Comput. Pro-
gram., 23(2-3):287–311, 1994.

[4] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Para-
metricity and dependent types. In Proceedings of the 15th ACM SIG-
PLAN international conference on Functional programming, ICFP
’10, pages 345–356, New York, NY, USA, 2010. ACM.

[5] Richard Bird and Ross Paterson. de Bruijn notation as a nested
datatype. Journal of Functional Programming, 9(1):77–91, January
1999.

[6] Nicolaas G. de Bruijn. Lambda-calculus notation with nameless dum-
mies: a tool for automatic formula manipulation with application to
the Church-Rosser theorem. Indag. Math., 34(5):381–392, 1972.

[7] Conor McBride and James McKinna. The view from the left. J. Funct.
Program., 14:69–111, January 2004.

[8] Conor McBride and Ross Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(1):1–13, 2008.

[9] Nicolas Pouillard. Nameless, painless (Agda code), 2011. http:
//tiny.nicolaspouillard.fr/NaPa.agda.

[10] Nicolas Pouillard and François Pottier. A fresh look at programming
with names and binders. In Proceedings of the 15th ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’10, pages
217–228, New York, NY, USA, September 2010. ACM.

[11] John C. Reynolds. Types, abstraction and parametric polymorphism.
In Information Processing 83, pages 513–523. Elsevier Science, 1983.

[12] Philip Wadler. Theorems for free! In Conference on Functional
Programming Languages and Computer Architecture (FPCA), pages
347–359, September 1989.

http://tiny.nicolaspouillard.fr/NaPa.agda
http://tiny.nicolaspouillard.fr/NaPa.agda

	Introduction
	Contributions
	Outline of the paper
	A brief introduction to Agda notation
	Related work: nameless representations
	bare: The original approach
	Maybe: The nested data type approach
	The Fin approach

	NaPa, a safer nameless representation
	Motivation
	A data definition kit
	NaPa types
	Operations on names
	A type for world inclusion witnesses
	Singleton worlds!

	Using NaPa: examples and advanced operations
	Some convenience functions
	Building terms
	Computing free variables
	Generic traversal
	Deciding term -equivalence

	Soundness using logical relations
	Recap of the framework
	An example: booleans represented by numbers
	Relations for NaPa
	Relations for NaPa types
	NaPa values fit the relation

	On the strength of free theorems
	Using logical relations and parametricity

	Conclusion and future work

