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Abstract
We present an expressive type system for a language extending the usual λ-calculus with concurrency
primitives from the π-calculus. This language uses dependent types as found in type theory, enriched
with linear types for processes. It allows to define programs performing communication according to
complex protocols, including possible dependencies on the communicated data. The core of this type
system is Martin-Löf type theory, and it is extended with rules derived from linear logic. Finally, we
present its formalisation as an embedding into AGDA and discuss the encoding of complex protocols.
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1 Introduction

Functional programming is a successful paradigm, that builds on the notion of types to allow for
safe and expressive languages. The development of type theory [14] has extended the scope of
types to the specification and verification of properties of programs, up to the point where one can
write programs together with specifications that are all validated through a type system, not only
from the perspective of proof assistants [6], and also from the viewpoint of pure programming,
when using dependent types [16]. Beyond the original scope of functional programming, the
representation of communication in programs has been intensively investigated over the last few
decades, in particular with the development of process algebras [11] and the π-calculus [15].
This has lead to progress in the area of types for processes, in particular with the introduction
of session types [12] and later with their connection to linear logic [4, 19]. However, the theory
of typed communicating programs is not yet as developed as the theory of functional programs,
and this leads naturally to the question of how one might integrate one into the other.

Among the possible combinations of the functional and communication-centric paradigms,
we are interested here in the idea of extending a typed λ-calculus, seen as a model of functional
programming, with primitives for communication, as done for example in the study of session
types for functional programs [7]. However, the system we consider integrates communication
of functional data as well as channel names, building on the connection between the π-calculus
and linear logic and going further than previous integrations based on a similar scheme [17]. In
particular, we use a full dependent type theory as host functional language. The difficulty lies in
the smooth integration of the delicate linear typing of processes in a system where dependencies
can appear between non-linear terms and types. The reward for such an integration is high, as
it provides the means of defining communication protocols depending on the data transmitted,
and ensures that these are implemented by well-behaved programs.

The association of communicating processes and dependent types has two complementary
sides: it extends the expressive power of session types as used for variants of the π-calculus, and
it simplifies the task of reasoning about communicating programs. This is well illustrated by our
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2 Dependent Communication in Type Theory

choice of Martin-Löf type theory as host language, as this is the theory underlying the AGDA [16]
language, intended as a framework for programming and reasoning using dependent types. The
purpose of the language we propose here is to introduce a minimal extension to type theory: it
shall support enough communication to avoid extending further the language, but rather encode
the types necessary to express more complex interactions.

Linear types for processes. The cornerstone of this investigation is the introduction of the
multiplicative fragment of linear logic [8], as presented in the sequent calculus, into Martin-Löf’s
type theory. In order to maintain the properties of linear typing of processes, we isolate processes
from functional terms but define an interface to allow these two forms of programs to mix. Such
a separation is essential, and is enforced by using two different typing judgements.

A notable difference between our system and related ones [17] based on the interpretation
of linear formulas as sessions [4, 19] is that the linear connectives O and ⊗ are used to organise
channels rather than indicate input/output behaviour. The strictly behavioural part of the types
we use consists in the standard input and output types from session types [18]. As a result, the
processes typed in this system are those obtained from proofs through the translation described
by Abramsky [1], extended with special inputs and outputs for functional terms. The particular
use of linear rules to type processes and their integration in type theory are described in Section 2
and Section 3 respectively — note that basic knowledge of linear logic [8] is assumed.

Encoding processes in AGDA. On a more practical level, one of the interests of the extension
to Martin-Löf’s type theory proposed here is that it can be encoded in AGDA by introducing a new
universe for protocols — collections of session types associated to channel names — and defining
processes in the language of type theory. We describe in Section 4 such an encoding, and discuss
the subtleties involved in the handling of linear proofs. This development also contains a proof
of cut elimination in AGDA, ensuring that well-typed terms containing processes reduce correctly
and without deadlock nor livelock. Furthermore, it forms a basis for future investigations into
the use of processes inside type theory, or the mechanised verification of protocol specifications
expressed in the language of type theory.

Representing complex protocols. Only a small fragment of linear logic is introduced into
type theory here, where rules are purely multiplicative and thus contain no duplication, even in a
restricted or controlled way. An interesting observation is that this, combined with the interface
between intuitionistic type theory and linear logic, is enough to recover the specification of more
complex behaviours, using for example controlled forms of duplication.

We study in Section 5 the encoding of communication protocols exploiting some possibilities
of dependent types. For instance, the case analysis behaviour obtained by considering additives
in concurrent interpretations of linear logic [4] can be recovered by making a session type depend
on the value of a bit transmitted using the data communication primitives. We also discuss the
use of our framework to specify distributed variants of algorithms which can be easily specified
with strong guarantees in dependent type theory, such as sorting algorithms.

Limits to linearity in type theory. One should note that although the type theory we present
here allows one to exploit the expressivity of dependent types in a language supporting processes
and sessions, defining a dependent form of session types is a different matter entirely. Indeed,
dependencies are handled at the level of intuitionistic types and we cannot specify a type linearly
depending on a term, as it would require defining a precise meaning for such a dependency. The
investigations conducted towards this end all face the difficulty of this question, and so far only
limited forms of linearity have been mixed with dependent types, in the sense that the dependent
product is disconnected from the linear decomposition of implication [5, 13]. Even though the
modalities of such an integration are better understood now, the limits to the use of dependencies
in a linear type theory have not yet been overcome.



N. Guenot, D. Gustafsson, N. Pouillard 3

� P :: J, [d : S], [e : T]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c(de) P :: J, [c : S O T]

� P :: J, [d : S, e : T,G]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c〈de〉 P :: J, [c : S ⊗ T,G]

� P :: J, [H,G]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� P :: J, [H], [G]

−−−−−−−−−−−−−−
� 0 :: [·]

� P :: I, [G] �Q :: J, [H]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� P ‖Q :: I,J, [G,H]

� P :: J, [c : S, d : S⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� (νcd) P :: J

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c↔d :: [c : S], [d : S⊥]

Figure 1 Typing rules for processes based on linear logic

2 Typing Processes with Linear Logic

The rules we will use to type processes are variations on the standard use of linear logic as a type
system for the π-calculus, described in [1] and [3]. This interpretation of linear proofs has been
later modified in both an intuitionistic linear [4] and a classical linear [19] variant, to follow the
principles of session types [12], but we return here to the original design of Abramsky.

An important problem in such an interpretation of sequent calculus proofs lies in the handling
of parallel composition and the corresponding branching in a proof. Indeed, if a communication
operation is associated to a logical rule such as the right rule for ⊗, we will need to type both the
operator and a parallel composition, as done for example following the translation of Abramsky:

� P :: Γ , d : S �Q ::∆, e : T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c〈de〉 (P ‖Q) :: Γ ,∆, c : S ⊗ T

where we have simplified the picture by using a binding output. This leads to a host of problems
with the syntactic congruence on processes and the preservation of typing. In order to avoid
this, we depart from the usual presentation of linear logic and enrich its sequent calculus with
two levels, using typing judgements of the shape � P :: J, where:

I,J ::= · | [H] | I,J G,H ::= · | c : S | G,H

and where c denotes a channel name, while S denotes a linear formula seen as the type of this
channel. The intuitive interpretation of this two-level approach is simple: comma in J represents
a meta-level O while in H it represents a meta-level ⊗. The view of the comma as the O is the
standard interpretation of sequents in linear logic, but here we can indicate that formulas should
be distributed into different sequents, using brackets [·]. The purpose of this generalisation is to
make branching — and the splitting of the context — independent from the decomposition of
the connectives. From a proof-theoretical viewpoint, this is related to the need to decompose the
formulas not only at top level, a question adressed partially using hypersequents [2] and more
thoroughly studied in the setting of deep inference [10]. The form of nesting required here is quite
limited, as it only offers access to formulas appearing under a O and a ⊗, when considering the
logical interpretation of sequents.

This approach leads to the system described in Figure 1, where processes can contain binary
inputs and outputs, parallel compositions and scopes, as well as the inactive process and a form of
forwarder found in [4]. An important observation here is that in the rule for parallel composition,
both G and H can be · and thus the mix rule is present. Although it is not a problematic rule,
it is not part of standard linear logic. Moreover, in order to obtain the expected properties for ‖
we need the rule treating the composition of two blocks [·], which also amounts to the presence
of mix, by interpretation of the judgements: the implication (A⊗ B)−◦ (AO B) is valid here.
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Polyadic communication. We can easily extend the rules for O and ⊗ to support the n-ary
variants of the multiplicative connectives, as follows:

� P :: J,
−−−→
[e : S]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c(~e) P :: J, [c :O~S]

� P :: J, [
−−→
e : S,H]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
� c〈~e〉 P :: J, [c :⊗~S,H]

and thereby obtain typing rules for general polyadic communication, as found in the π-calculus.
Here, a concise syntax indicates the use of a whole sequence of blocks [·] or types of the shape
c : S, extracted from the n-ary connective. Note that by doing so, we obtain the multiplicative
units of linear logic for free, but we are not interested in the distinction between the two. Beyond
accepting the implication induced by mix, we simply collapse the two units, so that the rule for
0 can be written: −−−−−−−−−−−

� 0 :: ·

and the distinction beetween the nullary case ofO and⊗will not be emphasised in the following,
since they are now logically equivalent. Observe that extending linear logic with the mix rule is
neither problematic nor surprising, since the concurrent interpretations of linear logic are related
to the use of proof-nets [9], as observed in [3], where mix simply translates as the juxtaposition
of valid nets. The collapse of the two multiplicative units makes sense when considering them
as types simply indicating termination of a process.

There is one rule in the system described in Figure 1 that is not reflected in the structure of
processes, which is not fully satisfactory from a proofs-as-programs perspective. However, this
could be avoided by using a more complicated variant of the rule for ‖ where several blocks [·]
blocks are split, under some conditions on groupings chosen in the premises. We keep the rules
separated for the sake of clarity in this presentation.

Finally, note that we use a binary form of scoping, reminiscent of [18] but introducing two
distinct channel names c and d. This stems from the design of the cut rule chosen here, where no
branching is performed: this perspective on cut is consistent with the treatment of ⊗ in a system
where depth is used and cut is essentially viewed as the implication (A⊗ A⊥)−◦⊥. Indeed, we
wish to avoid repetition of channel names inside a sequent, while grouping dual session types
of the cut into a [·] block.

Congruence and permutations. The decoupling of ⊗ and of cut from branching allows us
to clarify the interpretation of each rule as a single construct in the π-calculus, but also provides
a natural interpretation of the syntactic congruence ≡ on processes in terms of permutations
of inference rules. Indeed, in the sequent calculus and in the generalisation we consider here,
many rules can be exchanged without changing the essential structure of the proof. Moreover,
such permutations are necessary in the cut elimination process, which proceeds by permuting
cut instances upwards in a proof tree.

The acknowledgement of rule permutations has two consequences. First, we can derive the
expected equations on ‖ from permutations of its rule with itself and others:

P ‖Q ≡ Q ‖ P P ‖ (Q ‖ R) ≡ (P ‖Q) ‖ R P ‖ 0 ≡ P (νcd) (P ‖Q) ≡ (νcd) P ‖Q

under the condition that neither c nor d appear in Q in the last equation. Then, permutations
involving the rules for O and ⊗ justify the syntax of prefixes where no indication of sequentiality
appears, just as in [3], since exchange of prefixes is possible. This means that we can validate
the equations πκP ≡ κπP if π and κ are involving fully distinct names, and (νcd)πP ≡ π(νcd) P
if c and d do not appear inside π. Moving prefixes past each other is unusual in the π-calculus,
but it is necessary from a logical viewpoint to ensure that no cut can reach a blocked situation
preventing its elimination.
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Cut elimination and communication. In a type system for π based on the sequent calcu-
lus, cut elimination appears at the level of processes as reduction, specified through a rewriting
system performing communication steps in appropriate configurations. The multiplicative frag-
ment has a simple cut elimination procedure, with a single principal case involving O and its
dual ⊗. The cut reduction in that case translates on processes as the rewrite rule:

(νcd) (c〈c0c1〉 P ‖ d(d0d1)Q) → (νc0d0) (νc1d1) (P ‖Q)

which corresponds to the usual communication rule of the π-calculus, when considering binary
scoping as an alternative to channel renaming. Beyond the simple reorganisation of the channel
connections appearing in a process, the integration of this system into type theory will provide
the means of communicating functional data, thus moving closer to the setting of a functional
programming language extended with communication [7].

3 Communication in Dependent Type Theory

We now turn to the complete system, incorporating processes into dependent type theory. This
system is based on the version of Martin-Löf type theory underlying AGDA [16]. Our methodology
is to extend the syntactic categories of terms involved with both a term level for communicating
programs, using a syntax coming from the π-calculus [15], and a type level of sessions inspired
by both linear logic [8] and session types [18]. The resulting type theory, including processes,
will be called PTT in the following.

É Definition 1. The terms, processes, types and sessions of the PTT type theory are defined by
t, P, A and S respectively in the following grammar:

t, u ::= x | a | λ(x : A).t | t u | 〈t, u〉 | • | π1 t | π2 t | ~c.P | A | S
P,Q ::= 0 | P ‖Q | (νcd) P | c(~e) P | c〈~e〉 P | c(x : A) P | c〈t〉 P | t @ ~c

A, B ::= t | Π(x : A).B | Σ(x : A).B | 1 | {| ~S |} | Seti | Sessioni

S, T ::= t | ?(x : A). S | !(x : A). S | O~S | ⊗~S
where letters such as x , y and z denote term variables and a denotes a constant, while c, d and
e denote channels used in processes.

A large part of this syntax is standard for type theory, but functional terms are extended with
the binding construct ~c.P representing the process P interacting on the channels recorded in the
sequence ~c. This can be viewed as the packaging of a process in a functional form, where no free
channel name is allowed, as this would correspond to dangling connections from a programming
perspective, and lead to problems during reduction.

The part of the syntax intuitively representing types is also extended, with a construct {| ~S |} in
which a sequence of sessions is mentioned. Note that order matters in this operator, since these
sessions will describe the channels recorded in the sequence ~c in the term ~c.P. Moreover, we add
the type Sessioni representing the universe of sessions: this type, just as Seti , is annotated with
a level in order to distinguish the levels of the type hierarchy, and we will consider an additive
treatment of levels.

The fragment of the PTT system dealing with functional terms and types is essentially the
standard type theory from AGDA [16] with additional rules for the extra universes. The typing
rules are shown in Figure 2, where Γ ` t : A denotes a typing judgement associating type A to
the term t in a context Γ , which is a list of typing hypotheses. The alternate judgement Γ ` ·
corresponds to the verification of well-formation for Γ , ensuring that each assumption mentions
a type valid at that position in the context.
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Γ ` · Γ ` A : Seti
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ , x : A ` ·

Γ ` ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Seti : Seti+1

Γ ` A : Seti Γ , x : A ` B : Set j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Π(x : A).B : Setit j

−−−−−−
· ` ·

Γ ` ·
−−−−−−−−−−−−−−−−−−−−
Γ ` 1 : Set0

Γ ` A : Seti Γ , x : A ` B : Set j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Σ(x : A).B : Setit j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` · x : A∈ Γ
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` x : A

Γ ` t : A Γ ` A ' B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t : B

Γ , x : A ` t : B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λ(x : A).t : Π(x : A).B

Γ ` · a : A∈ S
−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` a : A

Γ ` t : Σ(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` π1 t : A

Γ ` t : Π(x : A).B Γ ` u : A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t u : B{u/x}

Γ ` ·
−−−−−−−−−−−−−−
Γ ` • : 1

Γ ` t : Σ(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` π2 t : B{π1 t/x}

Γ ` t : A Γ ` u : B{t/x}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` 〈t, u〉 : Σ(x : A).B

Figure 2 Functional terms and types fragment of the PTT system

In Figure 2, we denote by S the signature, containing typed constants, that we leave implicit
in all rules since it is specified externally. The rules for dependent products and sums involve the
substitution of a term t for a variable x in a type A, denoted by A{t/x}. Moreover, the conversion
rule allowing to consider normal forms of types is based on a relation defined externally.

ÉDefinition 2. The conversion relation ' between PTT terms t and u under a given Γ , written
Γ ` t ' u, is defined as the smallest congruence such that:

t → u
−−−−−−−−−−−−−−−−−
Γ ` t ' u

Γ ` t : Π(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` t ' λ(x : A).t x

Γ ` t : Σ(x : A).B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` t ' 〈π1 t,π2 t〉

Γ ` t : 1
−−−−−−−−−−−−−−−−
Γ ` t ' •

where → denotes the reduction relation that we will define on PTT terms.

The verification of well-formedness of types, shown at the top of Figure 2, deals with levels of
types using the notation it j for the maximum of i and j, and Figure 3 has a rule stating that the
type Sessioni has itself type Seti+1 so that this type can itself be used in the theory. In particular,
one can write terms computing sessions, for which typing requires knowing the relation between
the levels of Session and Set.

Finally, the verification that {| ~S |} is a valid type relies on the rule checking that every single
session Sk it contains is a valid session. In this rule, the notation t~i denotes the maximum of a
sequence of levels — the sequence obtained from the premises verifying each of the Sk sessions.

Processes and protocols. The typing rules for the fragment of PTT where processes, sessions
and protocols — collections of sessions — appear are shown in Figure 3. Most rules are defining
a judgement Γ � P :: J, where J is a two-level structure as defined in the previous section:

I,J ::= · | [H] | I,J G,H ::= · | c : S | G,H

considered under the equations making · a unit for comma, and ensuring the commutativity and
associativity of commas. Note that this structure is entirely at the meta-level in the type system,
and is not part of the syntax of PTT.
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Γ ` ·
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` Sessioni : Seti+1

(Γ ` Sk : Sessionik)k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ `O~S : Sessiont~i

Γ ` A : Seti Γ ` S : Session j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` ?(x : A). S : Sessionit j

(Γ ` Sk : Sessionik)k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` {| ~S |} : Sett~i

(Γ ` Sk : Sessionik)k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ `⊗~S : Sessiont~i

Γ ` A : Seti Γ ` S : Session j
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` !(x : A). S : Sessionit j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ � P :: J,
−−−→
[e : S]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c(~e) P :: J, [c :O~S]

Γ � P :: J, [
−−→
e : S,H]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c〈~e〉 P :: J, [c :⊗~S,H]

Γ � P :: J, [H,G]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � P :: J, [H], [G]

Γ � P :: I, [G] Γ �Q :: J, [H]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � P ‖Q :: I,J, [G,H]

Γ � P :: J, [c : S, d : T] Γ ` S '⊥ T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � (νcd) P :: J

Γ ` ·
−−−−−−−−−−−−−−
Γ � 0 :: ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ ` A : Seti Γ , x : A� P :: J, [c : S]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c(x : A) P :: J, [c : ?(x : A). S]

Γ ` t : {| ~S |}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � t @ ~c ::
−−−→
[c : S]

Γ ` t : A Γ � P :: J, [c : S{t/x}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c〈t〉 P :: J, [c : !(x : A). S]

Γ � P ::
−−−→
[c : S]

−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` ~c.P : {| ~S |}

Figure 3 Process fragment of the PTT system

The rules for polyadic input and (bound) output from the π-calculus, parallel composition
and scoping are directly imported from the system we considered in Section 2. However, the
treatment of duality is more subtle here, and performed through a special relation.

É Definition 3. The duality relation '⊥ on sessions of PTT is the smallest symmetric relation
containing the relation defined by the following rules:

Γ , x : A` S '⊥ T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` ?(x : A). S '⊥ !(x : A). T

(Γ ` Sk '⊥ Tk)k
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ `O~S '⊥⊗ ~T

Γ ` S ' S′ Γ ` S′ '⊥ T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` S '⊥ T

The core π-calculus is extended in PTT with operators for the input and output of functional
data, and we write c(x : A) and c〈t〉 for a reception on a channel c of a value of type A named x
in the continuation, and an emission of t on c, respectively. The corresponding typing rules are
best compared to those of the functional language from [19], inspired by [7], but incorporate
the additional treatment of dependent types.

Beyond the interaction between functional terms and processes in data input and output, the
interface between judgments ` and � offers the possibility of combining these paradigms. From
one to the other, packaging processes as terms and unpackaging terms to processes is trivial but
for one question: that of the treatment of channel names in a protocol J. The solution adopted
here is to select an order among the free channel names when packaging, and to preserve that
order in the functional layer until it is unpackaged following the same order. Notice that typing
t @ ~c requires that blocks in the protocol contain a single session type, implying that compound
blocks handled by cut and the ⊗ rule must be split within the phase where the corresponding
rule appears. This allows the functional type {| ~S |} to remain a simple sequence of sessions.
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Congruence and reduction. As mentioned in Section 2, the correspondence of reductions
in a process calculus to the dynamics of cut elimination crucially relies on the identification of a
number of syntactically distinct processes that are, for all intents and purposes, the same. The
language of PTT is therefore equipped with an equivalence relation dealing with basic properties
of ‖ as well as the exchange of unrelated prefixes. This last notion is made precise by considering
channel names in prefixes, and stating that input/output prefixes π and κ are orthogonal, which
is denoted by π⊥κ, if and only if they have no channel name in common.

É Definition 4. The equivalence ≡ on terms and processes of PTT is the smallest congruence
relation satisfying the equations below:

P ‖ 0 ≡ P P ‖ (Q ‖ R) ≡ (P ‖Q) ‖ R (νcd) (P ‖Q) ≡ (νcd) P ‖Q (c, d 6∈Q)
P ‖Q ≡ Q ‖ P πκP ≡ κπP (π⊥κ) (νcd)πP ≡ π(νcd) P (c, d ⊥π)

Although the equivalence considered here is close to the one used in an untyped π-calculus,
it has no equation to remove unnecessary scope restrictions. Indeed, the logical correspondence
of this construct to the cut rule prevents this, as a cut cannot be introduced or eliminated silently
— because the definition of sessions prevents cuts on a symbol like · or an equivalent.

The next step is to equip the language of PTT with a reduction relation, defined as a rewriting
system. The semantics given to the standard part of the type theory is as usual β-reduction, while
the reductions involving communication operators correspond to the reduction of processes in
the π-calculus. We have one additional reduction that treats the unpackaging of processes pack-
aged as terms, but it is a simple unboxing operation.

ÉDefinition 5. The reduction relation → on PTT terms and processes is the contextual closure
of the following set of rewrite rules:

(λx .t) u → t{u/x}
π1 〈t, u〉 → t
π2 〈t, u〉 → u

(~c.P)@ ~e → P{~e/~c} if |~c|= |~e|
(νcd) (c〈~e〉 P ‖ d(~g)Q) → (ν~e~g) (P ‖Q)
(νcd) (c〈t〉 P ‖ d(x)Q) → (νcd) (P ‖Q{t/x})

We now have a complete system, and we turn to the properties it satisfies. First, we consider
the stability of typing under the syntactic congruence defined to identify processes. This result
is rather straightforward here, but it does not generally holds in session type systems based on
linear logic [4, 19], where the grouping of outputs and parallel composition is problematic, for
example, and restricts the shape of well-typed processes.

É Theorem 6. For any terms t and u of PTT, if Γ ` t : A and t ≡ u then Γ ` u : A.

Proof. By inspection of the equations for ≡ . In each case, we reorganise the typing derivation to
obtain a new derivation for the equivalent term. Note that ≡ is homomorphic on the functional
fragment of the theory, and modifies only the parts of derivations corresponding to linear logic
rule instances, which admit permutations with other independent rule instances. Ê

Then, we show that the system has subject reduction, so that typing is stable under reduction:

É Theorem 7. For any terms t and u of PTT, if Γ ` t : A and t → u then Γ ` u : A.

Proof. By induction on the structure of the reduction from t to u, and by analysis of the shape
of the typing derivation for t. In the case where the subterm reduced in t appears at top level,
a case analysis shows that the reduction to u corresponds to a case from either normalisation in
the type theory, or cut elimination in the linear system, based on the sequent calculus. Ê

More details on the normalisation result, in particular concerning the linear system where
cut elimination corresponds to reduction, can be found in the next section, described from the
viewpoint of the AGDA formalisation of PTT.
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4 Embedding Processes in the Agda language

The type theory presented in the previous section is based on the idea that a layer of processes can
be introduced into a type theory à la Martin-Löf, thus allowing a calculus modelling concurrent
programming to use dependent types. We now consider the realisation of this idea on a more
practical level, in a dependently typed programming language: a part of the PTT language has
been implemented1 in AGDA [16], using a shallow embedding where the functional layer of PTT
is directly translated as the corresponding part of the AGDA language.

Embedding the process layer in a functional language requires to define a representation
that supports the properties expected from processes, but we have designed rules exploiting a
rather general syntax to allow for more flexibility. In the AGDA representation, we simplify the
theory by considering binary forms of O and ⊗, and replace the cut and ⊗ rules by the branching
variants:

Γ � P :: I, [c : S] Γ �Q :: J, [d : T] S '⊥ T
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ � (νcd) (P ‖Q) :: I,J

Γ � P :: J, [d : S] Γ �Q :: J, [e : T]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c〈de〉 (P ‖Q) :: I,J, [c : S ⊗ T]

Moreover, we drop the pure mix rule and retain only, beyond the two rules above, the binary
O rule, the axiom typing 0, the mix rule typing ‖ by branching and the rules for data input and
output as well as the interfaces to the functional layer. The resulting system is equivalent to the
original one on a logical level, except for the units. Indeed, n-ary connectives can be recovered
in all cases where n≥ 1 and the pure mix rule was used because of the congruence only.

Data input and output. Interestingly, the rules introducing dependencies in a session type
can be interpreted in a straightforward way inside pure type theory, building on the similarity of
? and ! to Π and Σ respectively. A product Π(x : A).B can indeed interact with a sum Σ(x : A).C
in a way similar to input and output: the sum provides a proof of A and B assumes the existence
of a proof x of A. These constructions are thus simple to handle in the AGDA representation.

Cut elimination in linear logic. The most important property of the PTT system is that any
term can be reduced to a normal form. However, this requires to normalise terms containing
processes and thus to showing that linear typing implies that communication can be properly
executed in processes. This amounts to a proof of cut elimination in the multiplicative fragment
of linear logic extended with mix, and accomodating the rules interfacing functional terms and
processes. We discuss now the proof of cut admissibility used in the AGDA representation.

The proof proceeds by induction on the cut formula, and relies on splitting lemmas, in which
a continuation term is inserted in a process to modify the subprocess involving the channel on
which cut was performed. There is a splitting lemma for each possible shape of the session, but
we show here only the case of ⊗:

� P :: I, [c : S ⊗ T]

�Q0 :: I0, [d : S] �Q1 :: I1, [e : T]
...

� R :: I0, I1,J
(splitting lemma for ⊗) =====================================================================

� P{R� c〈de〉 (Q0 ‖Q1) } :: I,J

where the notation indicates that we modify some process P using a second process R parametric
in the structures I0 and I1. The key idea is that inside P, there exists a subprocess of the shape
c〈de〉 (Q0 ‖Q1) corresponding to the decomposition of [c : S ⊗ T]. The notation { ·� · }, in the

1 https://github.com/crypto-agda/protocols

https://github.com/crypto-agda/protocols
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style of a substitution, denotes the replacement of this output process by R where Q0 and Q1 are
plugged. This splitting rule commutes upwards with all other rules until the adequate ⊗ rule is
met — and this rule is unique by linearity.

The splitting lemma for O, the dual of ⊗, is expressed by the following scheme, where R is
parametric in a single structure I0 and contains only one open premise Q0:

� P :: I, [c : S O T]

�Q0 :: I0, [d : S], [e : T]
...

� R :: I0,J
(splitting lemma for O) ==========================================================

� P{R� c(de)Q } :: I,J

and the combination of these two lemmas yields the case of cut reduction involving a formula
S ⊗ T and its dual. Notice that no functional context Γ is mentioned here, since by the time
normalisation requires eliminating a cut, this context is empty — as a consequence of reduction
not being performed under abstractions in type theory. Consider a cut on ⊗ and O:

� P :: I, [c : S ⊗ T] � P ′ :: J, [d : S⊥O T⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

� (νcd) (P ‖ P ′) :: I,J

that we rewrite into two cuts, on the two subformulas of these connectives, where the rightmost
premise is an unknown process Q′ typed using an unknown structure J′ that we introduce in the
conclusion:

�Q0 :: I0, [e : S]

�Q1 :: I1, [ f : T] �Q′ :: J′, [g : S⊥], [h : T⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

� (ν f h) (Q1 ‖Q′) :: I1,J′, [g : S⊥]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

� R ¬ (νeg) (Q0 ‖ (ν f h) (Q1 ‖Q′)) :: I0, I1,J′

to obtain a process that we name R, parametric in the unknowns Q′ and J′. We can now use this
R to produce the expected proof, using a combination of the splitting lemmas for ⊗ and O:

� P :: I, [c : S ⊗ T]

� P ′ :: J, [d : S⊥O T⊥] � R :: I0, I1,J′
===========================================================
� P ′{R� d(gh)Q′ } :: I0, I1,J

====================================================================================
� P{ P ′{R� d(gh)Q′ }� c〈e f 〉 (Q0 ‖Q1) } :: I,J

This procedure can be applied the other rules, and we can therefore prove that all cuts can be
eliminated from a typing derivation of PTT. As a consequence, functional reductions blocked by
some process constructs can be performed once the process has been reduced. Note that proving
normalisation in PTT requires proving normalisation in the functional layer and cut elimination
in the process layer simultaneously.

Forwarders. The process layer of the PTT system has no correspondent to the identity axiom,
which was interpreted as a forwarder in Section 2, following [4]. However, we can express this
process as detailed in Section 5.
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5 Encoding Complex Protocols

In this section we illustrate the use of PTT through a series of examples and constructions. For
this we use a type theory extended with inductively defined data types and data families, which
is essentially the framework available in AGDA. Moreover, we consider in the following examples
a framework extended with the features of PTT, to illustrate their use in a practical setting. The
examples are presented in the syntax of this slightly fictional extension of AGDA, and we use
colors to distinguish the names of our definitions and the general syntax of the language. The
following definitions are assumed:

• the empty type O represents falsity,

• the type 2 has two values 02 and 12 used to denote a single bit of information, but also as a
boolean value, where 02 is false and 12 is true,

• these data types can be eliminated, and we write D-elim−→ai d where D is the name of the
type and each ai is of some type A, and this eliminator maps each value di of the type D to a
corresponding ai .

Note that 2-elim corresponds to an if expression, and O-elim is supposed to return a value
of an arbitrary type, if provided with a value of the unhabited type O. The type _≡_ is the type
of propositional equality, also called the identity type. AGDA reserves the usual equality symbol
= for definitions, and we will apply this convention as well.

Additive connectives. Given two sessions S0 and S1 it is common to combine them as a
choice. We use the standard notation from linear logic: a process p0 following session S0 ⊕ S1

chooses to follow either S0 or S1 . Conversely a process p1 following the session S0
⊥ N S1

⊥

is responding to a choice between sessions S0
⊥ and S1

⊥, and thus needs to be able to continue
both. The processes p0 and p1 should both communicate safely with each other. We support_⊕_
and _N_ without the need to extend our notion of session. As a binary choice is no more than
a single bit of information, offering a choice is receiving one bit and making a choice is sending
one bit. The bit must be analysed to define the the rest of the session, using the eliminator for 2.
If one thinks of sending (!) to be a Σ-type and of receiving (?) to be a Π-type, then the standard
interpretation of N as a product×and of ⊕ as a coproduct ] is recovered through these two type
isomorphisms: A × B ∼= Π(x : 2). 2-elim A B x and A ] B ∼= Σ(x : 2). 2-elim A B x.
Figure 4 contains the definitions for choices (N and ⊕), their introduction form, and their units.

The unit forN has to be equivalent to 1 (the unit for×) and the unit for⊕ has to be equivalent
to O (the unit for ]). Another way of viewing this is that the send and receive actions (!, ?)
are n-ary choices and the units are of arity zero. Therefore the unit for N is defined as a receive
in the empty type. The common pattern here is that messages are eliminated right away after
a recv, a ?, and a !. As a particular case the in>, after having received a value in the empty
type, can pretend to follow any other session S. This cannot happen anyway as an eliminator
only reduces once it is given a concrete value, which is impossible in the case of O. Send and
receive actions can therefore be used to recover the additive fragment of linear logic. Choices of
any arity are available by choosing the message type to be of a particular size. The elimination
of the message then permits as many continuations for the session as there are choices available.

These examples are thus defined for an extension of a system such as AGDA which would
encompass all the features of PTT. As notational convenience the system silently takes care of
ended channels. Similarly, sessions are implicitly ended, e.g. by writing ?(x : N). ?(y : N)
without the final . ⊥. Moreover multiple receives (or sends) on the same channel can be written
in a single go, written as recv c(x : N)(y : N) instead of recv c(x : N) recv c(y : N). The
syntax for splitting channels (O and ⊗), c{d,e} and c[d,e] respectively.
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S0 & S1 = ?(x : 2).2-elimS0 S1 x
S0 N S1 = ?(x : 2). 2-elim S0 S1 x

S0 ⊕ S1 = !(x : 2).2-elimS0 S1 x
S0 ⊕ S1 = !(x : 2). 2-elim S0 S1 x

Γ � P0 :: [c : S0],J Γ � P1 :: [c : S1],J
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c(x : 2) 2-elim P0 P1 x :: [c : S0 & S1],J

inN : {| S0; J |} × {| S1; J |} → {| S0 N S1; J |}
inN 〈 p0 , p1 〉 =
π(c;ds). recv c(x : 2) (2-elim p0 p1 x)@(c;ds)

Γ � P :: [c : S0],J
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c〈02〉 P :: [c : S0 ⊕ S1],J

in⊕ : {| S0; J |} ] {| S1; J |} → {| S0 ⊕ S1; J |}
in⊕ (inl p) = π(c;ds). send c < 02 > p@(c;ds)
in⊕ (inr p) = π(c;ds). send c < 12 > p@(c;ds)

>= ?(x :O).O-elim x
>-Session = ?(x : O). O-elim x

0= !(x :O).O-elim x
0-Session = !(x : O). O-elim x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ � c(x :O) O-elim x :: [c :>],J

in> : {| >-Session; J |}
in> = π(c;ds). recv c(x : O) (O-elim x)@(c;ds)

Figure 4 Deriving the additive connectives and units

Identity expansion as forwarders. Previous correspondences between linear logic and the
π-calculus have put a process forwarder as the interpretation of the identity rule. [4, 19]. One
might wonder why PTT does not have any identity rule, nor any builtin forwarder process. The
reason being that such a process can be expressed in our language. This process is defined by
induction over the type of sessions similarly to how one proves identity expansion in linear logic.
For both send and receive, there is one side on which one can receive, from this side we receive
a message that is then forwarded to the other side, and recursively forward the continuation of
the session. For O and ⊗ one splits both channels, recursively forwarding the two continuations
in parallel. In our extended AGDA syntax it reads as follows:

fwd : Π(S : Session0 ). {| S ; S⊥ |}
fwd(?(x:A). S x) = π(i;o). recv i(x : A) send o <x> fwd(S x)@(i;o)
fwd(!(x:A). S x) = π(o;i). recv i(x : A) send o <x> fwd(S x)@(o;i)
fwd(S0 O S1 ) = π(i;o). i{i0,i1} o[o0,o1] ( fwd(S0 )@(i0;o0 ) | fwd(S1 )@(i1;o1 ) )
fwd(S0 ⊗ S1 ) = π(o;i). i{i0,i1} o[o0,o1] ( fwd(S0 )@(o0;i0 ) | fwd(S1 )@(o1;i1 ) )

Distributed merge-sort. As a way to present and demonstrate the expressiveness of our
system we define the essential building blocks and hint at various possible enhancements. A
distributed merge-sort usually relies on a traditional sequential algorithm to be used once the
size of the vector is small enough. We are going assume a type for vectors called Vec A n
where A is the type of the elements and n is its size. This is a data type commonly featured
in the dependently typed programming languages. Moreover we assume a type Ord A which
encompasses a comparison function and potentially a proof that it is a total ordering on A. On
vectors we assume the following functions which can all be defined in a type theory such as
AGDA:

take : Π(A : Set)(m : N)(n : N)(v : Vec A (m + n)). Vec A m
drop : Π(A : Set)(m : N)(n : N)(v : Vec A (m + n)). Vec A n
merge : Π(m : N)(n : N)(v0 : Vec N m)(v1 : Vec N n). Vec N (m + n)
sort : Π(A : Set)(ord : Ord A)(n : N)(v : Vec A n). Vec A n
ord-N : Ord N



N. Guenot, D. Gustafsson, N. Pouillard 13

We define Sorter A n as ?(vi : Vec A n). !(vo : Vec A n), that is, a session which
receives a vector and sends back a vector of the same size. Then our first sorting process is
receiving the input vector and sending back the sorted vector using the function sort.

simple-sorter : Π(n : N). {| Sorter N n |}
simple-sorter n = π(c). recv c(vi : Vec N n) send c < sort N ord-N n vi >

A way to enhance the sorting session is to enforce that the resulting vector is the sorted ver-
sion of the input vector. To capture this, we define the type Sorted n v =Σ(v’ : Vec N n). v’ ≡
sort n v, and refine the protocol as follows:

precise-sorter : Π(n : N). {| ?(vi : Vec N n). !(vo : Sorted n vi) |}
precise-sorter n = π(c). recv c(vi : Vec N n) send c < 〈 sort N ord-N n vi , refl 〉 >

So far the sorting process works only on vectors of natural numbers with the predefined total
ordering ord-N. One can scale to the general case by first sending the type A of elements, ord
the total ordering on A, the length n, and finally the input vector. This process shows some
key aspects such as the ability to send types, functions (ord) and to reference them later in the
session. Due to the treatment of universe levels the resulting session is a Session1:

polymorphic-sorter : {| ?(A : Set0 ). ?(ord : Ord A). ?(n : N). Sorter A n |}
polymorphic-sorter = π(c). recv c(A : Set)(ord : Ord A)(n : N)(vi : Vec A n)

send c < sort A ord n vi >

We now turn to the distributed merge sort. We implement a merger process which commu-
nicates with two sorters both implementing the Sorter session for size m and n. Our merger can
then implement Sorter for the size m + n. It first splits the only channel as two sub-channels d
and io, the channel d is then split again to have access to the two individual helper processes,
then it receives the input vector on io, sends both halves to d0 and d1 , then receives the sorted
sub-vectors again from d0 and d1 , and finally it sends the merge vectors back on channel io.
The whole session is thus essentially three times the Sorter session combined with O, which
gives the right amount of control to the merging process. Finally we put a wrapper around the
merger where the channels are packaged with O and the result is nicely presented with the use
of linear implication (A−◦ B = A⊥O B):

merger : Π(m : N)(n : N). {| (Sorter N m)⊥ ; (Sorter N n)⊥ ; Sorter N (m + n) |}
merger m n = π(e0;e1;io).

recv io(vi : Vec N (m + n)) send e0 < take N m n vi > send e1 < drop N m n vi >
recv e0(v0 : Vec N m) recv e1(v1 : Vec N n) send io < merge m n v0 v1 >

merger−◦ : Π(m : N)(n : N). {| (Sorter N m ⊗ Sorter N n) −◦ Sorter N (m + n) |}
merger−◦ m n = π(c). c{d,io} d{e0,e1} merger m n @(e0;e1;io)

The merge sort function can then combine the previous processes together to sort the vectors.
The function first checks whether it is worthwhile to distribute the work further. If it is not,
the simple-sorter is used, otherwise the size is divided in two, two channels are created,
and three sub-processes are launched. The first two are recursive calls and each of them uses a
different channel, the third one is the merger which uses the two other end points from the two
helpers and the channel c from upstream:
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merge-sort : Π(n : N). {| Sorter N n |}
merge-sort n
| n < 100000 = simple-sorter n
| otherwise = π(io). (ν d0 e0 ) (ν d1 e1 )
( merge-sort n0 @(d0 ) | merge-sort n1 @(d1 ) | merger n0 n1 @(e0;e1;io) )
where 〈 n0 , n1 〉 = n /2

Remark that one might wonder if this merge program is too sequential: we cannot add any
more parallelism since this would inevitably violate one of the typing rules. However, there is a
form of parallelism in this program, in the sense that actions on distinct channels can commute,
and thus the first action ready to interact can be considered first.

6 Conclusion and Future Work

The question of extending programming or reasoning frameworks with elements of concurrent
programming, or linearity [5, 13] has been studied in various ways: here, we have seen that the
burden of supporting linearity inside type theory is limited when considering concurrency and
linear types as a mere extension, wrapped with care into a functional layer.

The key to the approach of PTT is to limit the scope while offering simple means of specifying
programs exploiting both communication primitives and dependent types. Further investigations
should establish the limits to reasonable specifications, to know in particular what kind of code
mobility can be represented by sending and receiving processes wrapped as terms, or to which
extent session types themselves can be communicated and used to make processes even more
dependent. Note that in PTT, such advanced use will always use complex entanglements of the
functional and concurrent layers.

Another question is that of representations: frameworks based on functional programming
are good at reasoning on sequential languages, but offer no natural support for reasoning about
concurrency. If enough complex examples can be easily expressed inside a system following the
methodology of PTT, the task of reasoning about processes could be greatly simplified. But so far
such proofs are primarily intrinsic, as opposed to specifications as predicates on processes. One
first step would be to study the consequences of including the congruence relation on processes
into the conversion relation, thus enabling some reasoning on the equality of processes. Another
promising direction is concerned with information coming out of processes. Indeed, if a process
has type {| !(x : A) |}, its normal form is necessarily a send and thus holds a value of type A.
We can generalise this by observing that processes following sessions composed only of ! and
O can be extracted as nested Σ-types. By introducing an operation on sessions written log S,
which unlike the duality operator converts only ⊗ to O and ? to !, we can for instance extract
the transcript of a communication between processes. This can be expressed in the style of a
cut, interpreted as a linear formula, using (S ⊗ S⊥)−◦ log S.

Finally, on a more practical level, the development of a language integrating concurrency on
top of AGDA would give the opportunity to exploit the features of this system and make it easier
to specify and verify practical implementations of concurrent algorithms.
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