
Master’s thesis
Jesper Borgstrup

Private, trustless and decentralized
message consensus and voting schemes

Nicolas Pouillard, ITU

Andrzej Filinski, DIKU

November 23rd, 2014

Abstract

This thesis proposes a protocol to conduct anonymous, trustless,
decentralized elections over the internet. Only registered voters can
vote, multiple votes from the same voter are easily detected and dis-
carded, and it is infeasible to determine the identity behind a given
vote with a better probability than random guessing.

The voting protocol builds on top of a decentralized deadline con-
sensus protocol which can form a consensus about which messages have
been sent before a specific deadline. This consensus protocol can also
be used to suit other purposes such as contests, auctions and applica-
tions in a decentralized manner.

The protocols use the Bitmessage protocol for communication. Bit-
coin, blockchain-technology and Invertible Bloom Lookup Tables are
used for defining deadlines and timestamping of messages. Linkable
Ring Signatures provide a signature scheme suitable for signing votes.

A proof-of-concept client has been developed and implemented,
where one can create and run elections with a basic ballot format.

1

Contents

1 Introduction 4
1.1 Possible use cases . 4
1.2 The decentralized deadline consensus problem 4
1.3 Structure of the thesis . 6

2 Theory 7
2.1 Elliptic curve cryptography 8
2.2 Proof-of-work . 17
2.3 Bitcoin and blockchains . 18
2.4 Bitmessage . 25
2.5 Invertible Bloom Lookup Tables 39
2.6 Voting theory . 48
2.7 Linkable ring signatures . 50

3 The decentralized deadline consensus protocol 55
3.1 A shared bulletin board . 55
3.2 Deadlines on the Bitcoin blockchain 56
3.3 Timestamping on the Bitcoin blockchain 63
3.4 The participants . 65
3.5 The phases of the protocol . 66
3.6 The message interpretation layer 70

4 The voting protocol 72
4.1 Re-voting . 73

5 Implementation of the protocols 75
5.1 Using Bitmessage as the shared bulletin board 75
5.2 Invertible Bloom Lookup Tables 77
5.3 Blockchain usage . 77
5.4 Linkable ring signatures . 78
5.5 Relevant source files . 80

6 Evaluation 81
6.1 Scalability . 81
6.2 Threat model . 85
6.3 Voting properties satisfied . 88
6.4 Extensibility . 89
6.5 Possible improvements . 90

7 References 93

2

A Appendix 97
A.1 Using the voting client . 97
A.2 Pseudocode for consensus protocol 107
A.3 Py-EC . 111
A.4 Py-IBLT . 117
A.5 Bitcoin blocks with timestamps smaller than previous blocks 120
A.6 Proof-of-work average times 122

3

1 Introduction

This thesis proposes a high-level design and working implementation of a
trustless, private and decentralized peer-to-peer voting scheme.

In particular, the thesis has resulted in an electronic voting scheme that
is fully decentralized — that is, there is no need and no use for a central
authority; all users of the system are equal in rights and authority — as well
as trustless — it is not necessary to have trust in any particular user, one
only needs to trust the math underlying the system — and private — it is
infeasible to determine the identity behind a specific vote with probability
better than random guessing.

The voting scheme is based on a message deadline consensus protocol,
which serves to achieve decentralized consensus on which messages have been
sent before a specific deadline.

It is worth noting that the proposed design and protocols are relatively
simple to both understand and implement; as an example, we do not need
zero-knowledge proofs or secure multi-party computations for our scheme.

1.1 Possible use cases

One possible use case for this voting scheme is a group of people who are
not necessarily physically close to each other and want to vote to decide
the group’s standing on a particular issue, without having to trust any ad-
ministrator or third party to manage the voting process, while still being
convinced that the election took place without any cheating.

Another example of using this scheme would be for executing polls or
elections within corporations, where the voters want to be sure that their
vote counts while no one will be able to link their vote to their identity.

While the basic protocol only realistically scales up to a few thousand
voters, we can remedy this by creating many of these groups of voters —
essentially just like having many polling places in real world elections — and
then adding the intermediate tallies from these subgroups in order to get a
final tally.

An example of where this scheme could be useful in a large scale, is
for elections in countries where the population don’t have trust in their
government officials because of corruption or the like. The people voting
would not have to trust anyone from the government in order for them to
be convinced that the election was performed without foul play.

1.2 The decentralized deadline consensus problem

A central problem in this thesis is the decentralized deadline consensus prob-
lem, which is the problem of determining whether a message was sent before

4

a certain deadline without relying on any centralized service, while ensuring
that everybody arrives at the same result.

The motivation for solving this problem is for actors who want to arrive
at a consensus of messages that were sent before the deadline, but who don’t
trust each other nor any central authority to make the decision for them.

A prime example of this is an election situation, where voters want to
enforce a deadline for the election in order for it to end, and only have the
timely votes to be counted towards a final tally.

The decentralized deadline consensus problem poses two interesting sub-
problems:

• We cannot trust any actor to correctly timestamp messages them-
selves, because their clock may be out of sync or they may be acting
maliciously to force messages to appear as if they were sent before the
deadline, even if they weren’t.

• We need a canonical way to determine if a deadline has been reached
or not, again without trusting any single entity.

Formal description

More formally, we want a mechanism with the following properties:

1. it must be able to determine whether a deadline has passed or not.

2. it must provide a mechanism for timestamping arbitrary messages,
verifying these timestamps and deciding if a message was timestamped
before or after a deadline.

3. it must be canonical, meaning that querying this service for the times-
tamp of a message or if a certain deadline has been reached always
produces the same result regardless of who is querying.

4. it must be decentralized, i.e., no central authority will have absolute
control over it.

A number of timestamping services already exist that are either canonical
or decentralized, but not both:

Canonical timestamping Countless services, such as Twitter, Reddit,
and many other social interaction services, allow for posting a mes-
sage and timestamping it with the service’s current time in the process.
This produces a canonical timestamp, but isn’t decentralized since we
have to trust a central authority.

Decentralized timestamping The trivial example of decentralized times-
tamping is having each individual timestamp a message with their own
time. This obviously isn’t canonical because different individuals may
have different clocks.

5

1.3 Structure of the thesis

Section 2 describes and analyzes the theory we need to solve the above prob-
lems. In Section 3 I propose a protocol to solve the decentralized deadline
consensus problem, and in Section 4 we build a voting protocol on top of
the proposed consensus protocol. Section 5 describes the implementation of
these two protocols, and Section 6 evaluates the protocols and their imple-
mentations.

6

2 Theory

The following sections will describe the necessary theory used in this thesis.
The first five Sections (2.1 through 2.5) will provide a foundation for

solving the decentralized deadline consensus problem in Section 3, while the
last two Sections 2.6 and 2.7 will be used for building a trustless, private
and decentralized peer-to-peer voting scheme in Section 4:

Section 2.1 explains the mathematical basis and advantages of elliptic
curve cryptography. The concept of Proof-of-work (PoW) is explained in
Section 2.2. Section 2.3 examines the cryptocurrency Bitcoin and its associ-
ated blockchain technology. In Section 2.4 we look at Bitmessage, a peer-to-
peer protocol supporting encrypted and anonymous person-to-person and
broadcast communication. Lastly, in Section 2.5 we look into Invertible
Bloom Lookup Tables, a relatively new (2011) data structure for reconcili-
ating sets between different actors, using very little space.

Section 2.6 describes basic theory about voting schemes and their prop-
erties, and in Section 2.7 we examine a special type of cryptographic signa-
ture, the linkable ring signature, which we will use to distinguish votes from
registered voters.

7

2.1 Elliptic curve cryptography

Elliptic curve cryptography (ECC) is gaining ground in the world of cryp-
tography, being used increasingly instead of well-known and widely-used
schemes as RSA and Diffie-Hellman (DH). ECC offers improvements over
RSA and DH with smaller key sizes and more efficient implementations while
providing the same level of security [12].

The key sizes for elliptic curves range from being 6 to almost 30 times
smaller than RSA/DH keys providing the same security, as shown in the
following Table 1. For example, to provide the same level of security as a
3,072 bit RSA/DH key, only a 256 bit key is needed for ECC, which is a 12
times smaller key and computes roughly 10 times faster:

ECC RSA/DH RSA:ECC RSA:ECC
key size key size key size ratio computation ratio

160 bits 1024 bits 6.4 3
224 bits 2048 bits 9.1 6
256 bits 3072 bits 12.0 10
384 bits 7680 bits 20.0 32
521 bits 15360 bits 29.5 64

Table 1: Key sizes in RSA and ECC providing the same level of
security along with the ratio in key size and computational

cost [1]

It is interesting to note that the security of the two “first generation”
asymmetric encryption schemes, RSA and Diffie-Hellman, rely on two dif-
ferent, but closely related, problems; factoring the product of two large
primes and the discrete logarithm for finite groups, respectively.

On the other hand, the “next generation” scheme, elliptic curve cryptog-
raphy, is based on the mathematical properties of certain well-chosen elliptic
curves over finite fields, where it is assumed to be infeasible to find the dis-
crete logarithm of a given element on the curve given a publicly known base
point — the elliptic curve discrete logarithm problem or ECDLP, which is
similar to the discrete logarithm problem in finite groups.

The reason why RSA/DH keys must be larger than ECC keys to provide
the same level of security, is that RSA and Diffie-Hellman have slowly but
steadily been compromised by stronger and stronger attacks, while ECC has
had no known compromising attacks since it was introduced in 1985 [1].

8

2.1.1 What is an elliptic curve?

Traditionally, an elliptic curve E has been defined by a type of equation
known as a Weierstrass equation which is of the form

E : y2 = x3 + ax+ b, a, b ∈ R (1)

For the curve to usable, it has to be non-singular1, which it is iff a and
b satisfy the following equation:

−16(4a3 + 27b2) 6= 0

In addition to the Weierstrass equation, other equation types — in par-
ticular the Montgomery equation2 and the Edwards equation3 — have been
introduced, promising more efficient algorithms for performing mathemati-
cal operations on points on these curves [15].

Figure 1 shows a typical elliptic curve over R and a finite field. One can
see that the points on the curve over R are continuous and smooth, but in
a finite field the points are scattered across the entire field. Note how all
points in both curves are mirrored around a horizontal line in the center4.

(a) Elliptic curve over R (b) Elliptic curve over a finite field

Figure 1: A typical elliptic curve over R and a finite field. Images used
with permission from chain.com5

1A singular elliptic curve has a special point in which the tangent is not regularly
defined, and we need the tangent to be properly defined in all points on the curve.

2by2 = x3 + ax2 + x, where b(a2 − 4) 6= 0 in Fp
3x2 + y2 = 1 + dx2y2, where d(1− d) 6= 0 in Fp
4Curiously, when storing elliptic curve points in a “compressed form”, only the x-

coordinate is used along with a single bit that determines which of the two points with
that x-coordinate to use.

5http://blog.chain.com/post/95218566791/the-math-behind-bitcoin, visited
2014-10-17

9

http://blog.chain.com/post/95218566791/the-math-behind-bitcoin

In cryptography related applications, elliptic curves are usually6 used
over a prime field Fp = Z/pZ. For the remainder of this section on elliptic
curves, I will only focus on prime fields as the underlying field. The size of
this field defines the difficulty of the ECDLP.

Besides the already mentioned parameters — a, b and p — a curve
consists of a base point G, an order n and cofactor h:

The base point (or generator) G = (xG, yG) defines the cyclic subgroup
of order n in which addition and multiplication (doubling) of points on the
curve takes place. Finally, the cofactor h = |Fp|/n is normally 1 for curves
over prime fields [28].

Care must be taken when selecting the domain parameters (a, b, p,G, n, h)
for an elliptic curve in order for the curve to be considered secure. Several
standard curve parameters believed to be secure have been proposed by
SEC7 [28] and SafeCurves [31].

2.1.2 Geometrical addition of points

The elements E in the group of points in an elliptic curve are

E : {(x, y) | y2 = x3 + ax+ b} ∪ 0

... where 0 is a special point at infinity, which also serves as the identity
element with respect to addition (+).

The negation of a point P = (xP , yP) is defined as negating the y-
coordinate of the point: −P = (xP ,−yP). The negation of 0 is 0.

To understand the arithmetic behind elliptic curve point addition, it is
useful to first look at a geometric interpretation of the operation, which is
shown in Figure 2.

If P = (xP , yP) and Q = (xQ, yQ) are two points satisfying the curve
equation and xP 6= xQ ⇔ P 6= Q ∧ P 6= −Q, there is usually9 a unique
third point −R where the line through P and Q intersects with the curve.
Addition is defined as the negation of this unique point P +Q = R as seen
on Figure 2a. Figure 2c shows an addition over a finite field. Note that the
line “wraps around” the edges until it hits a point.

If, on the other hand P = Q, then we use the tangent line in the point
P to find the other unique point and negate this to find P + P = 2P = Q
as shown in Figure 2b. This is known as point doubling.

6Sometimes, the field used is a binary field F2m instead of a prime field.
7Standards for Efficient Cryptography
8http://blog.chain.com/post/95218566791/the-math-behind-bitcoin, visited

2014-10-17
9If there is not a unique third point defined this way, it means that the line through

the points P and Q is also the tangent for one of those points on the curve. Addition is
then geometrically defined as the negation of the point in which the line is tangent.

10

http://blog.chain.com/post/95218566791/the-math-behind-bitcoin

(a) Addition of two points over R
P + Q = R

(b) Doubling of a point over R
2P = P + P = R

(c) Addition of two points over a
finite field

(2, 22) + (6, 25) = (47, 28)

Figure 2: Addition and doubling of points on an elliptic curve over R and
addition over a finite field. Images used with permission from chain.com8

11

Lastly, if P = −Q, the line between the two points would be completely
vertical and the result of P +−P = 0.

2.1.3 Arithmetic addition of points

With a intuitive understanding of how to add and double points on an elliptic
curve, we define the same thing arithmetically so we can compute the results
of addition and doubling. We still differentiate between the three cases where
xP 6= xQ, P = Q and P = −Q. The equations given in this section can be
found, among other places, in Standards for Efficient Cryptography (SEC)
1 [27].

Normal addition (P + Q, xP 6= xQ) We consider two points P =
(xP , yP) and Q = (xQ, yQ), xP 6= xQ. As with the geometrical addition
above, we first find the line between the two points — in fact, we only need
the slope of the line

s =
yP − yQ
xP − xQ

From here, we can calculate

P +Q = R = (xR, yR)

xR = s2 − xP − xQ
yR = −yP + s(xP − xR)

Doubling (2P = P + P) When doubling, we need to check that the Y-
coordinate yP 6= 0. If yP = 0, the result of the doubling is 0.

Otherwise, if yP 6= 0, we calculate the slope differently than normal
addition (because we need the slope of the tangent in the point P):

s =
3xP

2 + a

2yP

Once we have the tangent slope, the calculation of the resulting point is
conceptually the same as in addition:

2P = P + P = R = (xR, yR)

xR = s2 − 2xP

yR = −yP + s(xP − xR)

Adding the inverse (P +(−P)) In the case that we want to add a point
to its inverse, the result is 0.

12

Multiplication with scalar values When addition of two points and
doubling of a single point has been defined, we can use that definition to
define multiplication of a point with an integer value. This multiplication
can be decomposed into a series of additions and doublings. As an example,
we’ll multiply a point P with 27:

27P = 26P + P

= 2(13P) + P

= 2(12P + P) + P

= 2(2(6P) + P) + P

= 2(2(2(3P)) + P) + P

= 2(2(2(2P + P)) + P) + P

This method of computing the multiplication of a point with a scalar
value is commonly called double-and-add10.

It is worth noting that nG = 0, where n is the order of the cyclic group.
0 being the neutral element in the group, this also implicates that (n+1)G =
nG+G = 0 +G = G.

2.1.4 Number of points in an elliptic curve over a finite field

Although it is computationally very hard11 to discover the exact number
of points in an elliptic curve over a finite field, a useful approximate of this
value is provided by Hasse’s theorem on elliptic curves [34] which states that

|N − (p+ 1)| ≤ 2
√
p

This can be interpreted to say that the number of points N is “very close”
to p+ 1 (p being the size of the underlying field). Very close meaning that
N and p+ 1 differ by at most 2

√
p.

This next section will explain why Hasse’s theorem is useful for our
purpose.

2.1.5 A hash function for elliptic curves

For certain applications we need an injective function that maps an arbitrary
bitstring into the point space of a curve. One might think of this function a
“hash function for elliptic curves” in the sense that it is fairly easy to map
the bitstring into the point space, but very difficult to reverse the direction
of the function and retrieve the bitstring from the point.

10As a mathematical curiosity, double-and-add is conceptually very similar to the square-
and-multiply method for computing large positive integer powers of a number.

11Basically, one would have to go through all points one after one and count them

13

Several functions of this kind exist — the try-and-increment method, the
“Twisted” Curves and the Shallue-Woestijne Algorithm among others [22],
and I will in this paper consider the try-and-increment method because of
its simplicity.

The try-and-increment method As hinted at, the try-and-increment
method is conceptually very simple and it maps a positive integer i ∈ Fp
into the point space. It is implemented in the following way:

1. Set x← i

2. Calculate r = x3 + ax+ b

3. If r is a quadratic residue12 in Fp, then return point P = (x,
√
r)

4. Else, increment x and restart at step 2

While it isn’t possible to determine exactly how many times this al-
gorithm will loop and try again for a specific starting value of x, Hasse’s
theorem above tells us that the number of valid curve points over a finite
field is close to the size of the field. This is important because we can inter-
pret the result as saying that roughly one out of two x-coordinates will be
valid and terminate in step 3 [22].

Another way to put this is to say that the probability of the algorithm
not returning after k steps is 2−k; in average the algorithm returns on its
first try in every other attempt, its second try in one out of four attempts,
and so on.

Hashing with the try-and-increment method Now that we have a
function Fp → E to turn an element of Fp into a point on an elliptic curve
over that field, we just need a function to irreversibly turn an arbitrary
bitstring into an element of the prime field, which then in turn can be
transformed to a point on the curve.

A straightforward obvious way to do this is to find a cryptographic hash
function with an output space (roughly) equal to the size13 of the prime
field. One could then hash the bitstring into an element of the prime field,
which is then again used as input to the try-and-increment method to create
an irreversible injection from an arbitrary bitstring to a point on an elliptic
curve over a prime field.

12An integer r is called a quadratic residue in Fp if there exists an integer x such that
x2 ≡ r mod p; we then define

√
r = x. If not, then r is called quadratic nonresidue. To

decide whether or not r is a quadratic residue in Fp, one could use the Tonelli-Shanks al-
gorithm [35], which also computes the needed

√
r. Note that the Tonelli-Shanks algorithm

only works with prime fields.
13Alternatively, the hash function could have an output space that is close to a multiple

of the field size, and we could use the remainder from division with p as input to the
try-and-increment method

14

2.1.6 Using elliptic curves for cryptography

With the mathematical basis in place for elliptic curves, we will look at
how we can use it to provide cryptographic primitives which have lower key
sizes and in turn more efficient implementations than the first generation
RSA/Diffie-Hellman schemes.

The elliptic curve discrete logarithm problem (or ECDLP), which is the
basis of cryptography with elliptic curves can be stated as follows:

Let E be an elliptic curve defined over a finite field Fp.

E : y2 = x3 + ax+ b a, b ∈ Fp

Let S and T be points in E. Find an integer m so that T = mS.

Note that although the problem looks like a division, T = mS ⇒ m = T
S ,

because we use additive notation, as is convention, we could just as well have
used multiplicative notation, T = Sm ⇒ m = logS(T) to make it look like a
logarithm.

The essence of the problem is that it is easy to compute T if you have
m and S, but impractical to compute m if you have S and T .

As mentioned in the beginning of Section 2.1, elliptic curve cryptography
provides more efficient alternatives to already widely-used schemes, such as
Diffie-Hellman key exchange (DH), Digital signature algorithm (DSA), and
Diffie-Hellman Integrated encryption scheme (DHIES). The elliptic curve
counterparts to these schemes are known as ECDH, ECDSA, and ECIES,
respectively [27].

Public and private keys with elliptic curves Two of the schemes,
ECDSA and ECIES, requires some kind of private and public keys, and for
elliptic curves, these key pairs are generated in the following way:

1. Select a random integer k ∈ [1, n− 1]. This integer is the private key.

2. The public key is calculated as K = kG.

It is important to note that although the private key k is an integer just
as with, e.g., RSA keys, the public key K is not an integer but instead a
point on the curve.

When someone receives a public key K = (xK , yK), they can check
that it is a valid public key point by checking the following three things as
described by Antipa et al. [2]:

• Check that K 6= 0 and that xK ∈ [1, n− 1] and yK ∈ [1, n− 1].

15

• Check that K lies on the curve, i.e., satisfies the curve equation.

• Check that nK = 0, where n is the order of the cyclic group.

The first two checks ensure that the point is on the curve, while the
third check serves to ensure that the point isn’t in a small subgroup of the
curve [2].

16

2.2 Proof-of-work

A proof-of-work is a solution to a mathematical puzzle that on average takes
a certain amount of resources to compute. The concept of proof-of-work
originated with Hashcash by Adam Back in 1997 [4].

Hashcash is a system originally proposed as a way to combat email spam,
and introduces the idea of CPU cost-functions, which are parameterisably
expensive to compute, but relatively cheap to verify.

The idea is that a client who wants to send an email would have to
spend CPU resources to complete a challenge from an email server in order
to identify the client as an honest email-sender. The problem for email-
spammers is then that they have to spend CPU resources for every email they
want to send, and this will essentially make mass-emailing a very expensive
task.

In particular, the PoW schemes discussed in this thesis are known as
partial hash inversionsm which build on a security property of cryptographic
hash functions; they are designed to be substantially easier to compute than
to invert: Given a hash function H, it is easy to compute y = H(x), but it
is very hard to find x given only the hash y.

The partial hash inversion basically works like this:

1. You need to have a message m that you want to compute a proof-of-
work for and the required target value t for the proof-of-work.

2. Choose a candidate integer14 i

3. Compute the hash of m concatenated with i: h = H(m || i)

4. If h < t, (h, i) is the proof-of-work for the message m.
If h ≥ t, repeat from step 2.

The difficulty of the challenge can be adjusted to increase or decrease
the average time required to solve it by making the target value t lower
or higher. Specifically, the challenge is to find a nonce that, when hashed
along with the payload yields a bit string that starts with a certain number
of zeros. Adjusting the number of zeros required adjusts the difficulty by
making it twice as hard for each additional zero bit.

Both Bitcoin and Bitmessage15, which we examine in the following sec-
tions, use a proof-of-work scheme. The former to establish consensus and
the latter to protect the network against flooding, respectively.

14In practice, this integer is usually selected by starting with 0, then 1, and so on.
15When doing the proof-of-work, Bitmessage computes the hash h as h = H(i || H(m)),

https://bitmessage.org/wiki/Proof_of_work, visited 2014-11-20

17

https://bitmessage.org/wiki/Proof_of_work

2.3 Bitcoin and blockchains

Bitcoin is a so called cryptocurrency, the first of its kind that has received
widespread adoption, and the underlying technology, the blockchain, which
is a central part of Bitcoin, has presented a way for many entities to agree
on a single truth.

In the Bitcoin protocol, clients connect and communicate with each other
without any kind of central repository or administrator. Instead, the clients
collectively decide on what to record in the blockchain, a public ledger of all
accepted transactions with the unit of currency, which is also called bitcoin16.
The blockchain is publicly visible to everyone interested, and contains a
complete record of all transactions since the first release of Bitcoin in 2009.

The original Bitcoin white paper [25] was published in 2008 by “Satoshi
Nakamoto”, a pseudonym for a person or a group of people; the true identity
of Nakamoto is unknown, although many attempts to uncover it have been
made [21].

The double-spending problem

Bitcoin and the blockchain is also a practical solution to the double-spending
problem [25], which is the problem of ensuring that an individual cannot
duplicate his money and use it as payment more than once. Historically, this
task has been undertaken by a central authority such as a clearing house, but
with Bitcoin this responsibility has been taken away from any single entity
and instead distributed among the clients in the Bitcoin network, who are
able to collectively reach a consensus about whether or not transactions are
valid and should be included in the blockchain.

The details about how this problem is solved is described in the following
sections.

Bitcoin addresses and keys

In Bitcoin, value is transferred between addresses, a combination of 26-
34 alphanumeric characters starting with 1 or 317, which look like this:
13u9opV1XxoTtvpjuhjw32jmkr63UwpH6F. Anyone can free-of-charge create
as many addresses as they desire.

An address is a Base58Check18 encoded 160-bit hash of the public key of
an elliptic curve keypair, meaning that an address is essentially defined by
its private key. The private and public keys in Bitcoin are standard elliptic
curve keys as described in Section 2.1.6, where the private key is an integer

16Note that Bitcoin with a capital B refers to the Bitcoin protocol and the Bitcoin
network, while bitcoin with a lowercase b refers to the currency unit.

17https://en.bitcoin.it/wiki/Address, visited 2014-10-16
18https://en.bitcoin.it/wiki/Base58Check_encoding, visited 2014-11-10, lists the

reasons for using a custom encoding instead of standard base-64 encoding.

18

https://en.bitcoin.it/wiki/Address
https://en.bitcoin.it/wiki/Base58Check_encoding

k ∈ [1, p− 1] and the public key is a point K = kG. The constants p and G
used by Bitcoin are described in the following section.

The exact recipe for computing the Bitcoin address corresponding to a
specific EC keypair can be found on the Bitcoin wiki19.

Elliptic curve cryptography in Bitcoin

Bitcoin uses a specific elliptic curve called secp256k1, which has been noted
as not being completely safe20 by http://safecurves.cr.yp.to. It is im-
portant to note that this doesn’t mean that this specific curve has been
compromised, but instead that the curve has some properties that could
eventually pose a security risk for everyone that uses it as a base for their
cryptography.

The domain parameters (p, a, b,G, n, h) for the secp256k1 curve are
specified in SEC’s Recommended Elliptic Curve Domain Parameters [28]
and are as follows21:

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

a = 0

b = 7

n ≈ 2256

h = 1

2.3.1 Transactions

One of the fundamental building blocks in the Bitcoin protocol is that of the
transaction22, or tx for short. A transaction is a transfer of bitcoins between
two or more Bitcoin addresses. A transaction must be signed with the
private key of the address that sends the bitcoins. This essentially ensures
that only the holder of a private key can authorize transfers of bitcoins from
the address associated with that private key, and, as such, it is infeasible to
forge transactions if one does not know the appropriate private key.

Transactions are identified by their transaction hash, which is computed
as a double SHA-256 hash23.

A transaction consists of a number of inputs and a number of outputs:

19https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses, vis-
ited 2014-10-16

20Not completely safe means that the curve may produce incorrect results for some rare
curve points and/or occasionally leak secret data.

21The generator point G is not included here for brevity.
22https://en.bitcoin.it/wiki/Transaction, visited 2014-10-16
23To clarify, in order to compute the hash of a transaction, one has to first compute the

SHA-256 hash of the transaction, and then compute the SHA-256 of that intermediary
hash.

19

http://safecurves.cr.yp.to
https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses
https://en.bitcoin.it/wiki/Transaction

Input An input is comprised of a reference to a previous output and a
script that proves that the transaction creator has knowledge of the pri-
vate key yielding the address that the previous output refers to, the source
address.

In particular, the reference to the previous output consists of the hash of
the transaction that the output is contained in, as well as the output index,
i.e., the 0-indexed output number inside the referenced transaction.

Output An output is the combination of another script that defines the
destination address, i.e., the address to which the bitcoins are to be sent, and
a value that specifies how many bitcoins to send to that address. The value
is denominated in satoshis, the smallest possible unit of bitcoins, where 1
bitcoin = 100,000,000 satoshis.

If the total value of all outputs exceed the value of the referenced inputs,
the transaction will be rejected as invalid. If, on the other hand the output
total value is less the the input values, the excess value will be regarded as a
transaction fee to the miner that includes the transaction in the blockchain.
Miners will be explained later.

Transaction scripts Both inputs and outputs contain scripts24 that serve
different purposes. As mentioned, output scripts define the address that will
receive the value, and input scripts serve as proofs that the transaction is
approved by someone who has knowledge of the private keys of the addresses
which contains the value to send. The input scripts are called scriptSig’s
and output scripts scriptPubKey’s.

Although the scripts are usually used as described here, they can allow
for more complex behaviours, such as requiring more than one private key,
or a combination of several private keys to “unlock” the value contained in
the transaction. These scripts can be used to form smart contracts and the
like25

Address balance It is important to point out that the current “balance”
of any Bitcoin address, i.e., the amount of bitcoins available for spending
by the holder of the private key of the address, isn’t an inherent property
of the address itself. Instead, the current balance is computed on the basis
of unspent transactions to that address, i.e., transactions with outputs that
have not been used as inputs for other transactions.

Publishing transactions When someone has created a valid transaction
and wants to include it into the blockchain, they broadcast the transaction

24A comprehensive documentation of the transaction scripts can be found at https:

//en.bitcoin.it/wiki/Script, visited 2014-10-16
25https://en.bitcoin.it/wiki/Contracts, visited 2014-11-17

20

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Contracts

to the their connected peers, which will in turn propagate the transaction
to every peer on the network. Note that whoever broadcasts it is irrelevant,
because the transaction is self-contained.

This means that you can create the transaction on a computer that holds
the private keys and is not connected to the internet, and then broadcast
that transaction from a completely different computer, if you are concerned
about the security of your keys and don’t want to potentially expose them
to the dangers of the internet.

Dust In order to keep the network from being flooded with really small
transactions (e.g., just sending 1 satoshi), the network considers small out-
puts to be dust and discourages transactions that only have dust as outputs
by either requiring a transaction fee or simply not including the transaction.

In the Bitcoin 0.8.2 update26, dust was defined as transaction outputs
less than 5430 satoshi (0.0000543 BTC), and at the same time the default
transaction fee was set to 10000 satoshi (0.0001 BTC). This means that the
smallest possible transaction requires 15430 satoshi (0.0001543 BTC, USD
0.06 at this writing27).

2.3.2 Blocks

When transactions are broadcast to the network, they are collected into
blocks, which are then placed on the blockchain. Each block contains a
reference to the previous block, so they together form a chain of blocks
which can be traced all the way back to the very first block, the genesis
block28, mined by Satoshi Nakamoto.

Blocks are essentially collections of recent transactions from when the
block was mined and put on the blockchain. A block also contains a proof-
of-work:

Proof-of-work (PoW) Just as in Section 2.2, the proof-of-work is to
find an integer such that the block concatenated with the integer yields a
sufficiently small number d when hashed29. Note that since each block must
contain the hash of the previous block, the solution to the PoW cannot be
computed before that block exists.

26https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/

release-notes-0.8.2.md, visited 2014-10-25
271 BTC could be exchanged for USD 358.20 on 2014-11-10
28The genesis block was created on January 3rd 2009, https://en.bitcoin.it/wiki/

Genesis_block, visited 2014-10-16
29Just as with the transactions, the PoW uses double SHA-256 as its hashing mecha-

nism. The reason for using double SHA-256 instead of a single round has been conjectured
(http://crypto.stackexchange.com/a/884/12371, visited 2014-11-17) to be to make
SHA-256 invulnerable to a length extension attack [19]

21

https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.8.2.md
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.8.2.md
https://en.bitcoin.it/wiki/Genesis_block
https://en.bitcoin.it/wiki/Genesis_block
http://crypto.stackexchange.com/a/884/12371

The number d defines the difficulty of the problem; if the hashing function
has an output space of size 2256, then a difficulty value of d = 2255 would
mean that a hash would be below d approximately half of the time, and
with d = 2254 a quarter of the time, and so on. If we also know how many
hashes a single computer, or conversely the entire network, can compute in
a given amount of time, we can calculate a difficulty value that makes the
PoW take a given time on average. In Bitcoin, this average time is set to
be 10 minutes.

As the network’s hashing power inevitably fluctuates with clients con-
necting and disconnecting, as well as the increase in the performance of
hardware over time, the difficulty is adjusted every 2 weeks30 to ensure that
the average block time remains close to the desired 10 minutes.

Mining When a client on the network has found a valid solution to the
PoW, he broadcasts the PoW and the corresponding block to everyone else,
and, if the other clients can verify the PoW as well as the transactions in
the block, that block is added to the top of the blockchain, and clients begin
a new block with new transactions on top of the newly added block.

This process of computing a PoW for a block is called mining31 and the
clients who participate in it are called miners.

Coinbase transaction When miners assemble a new block to begin min-
ing on, they add a special transaction as the first transaction in the block,
called the coinbase transaction. This transaction serves two purposes; to
issue new bitcoins into existence and to collect transaction fees as described
in the previous section on transaction outputs.

The miner is allowed (and expected) to transfer these newly issued coins
and transaction fees to their own address, thus creating an incentive to use
CPU time and electricity; they are paid in bitcoin for their efforts.

Bitcoins are issued at a predictable rate such that the supply of bitcoins
never exceeds 21 million32: The coinbase transaction of the first 210,000
blocks issue 50 bitcoin to the currency supply, the next 210,000 blocks issue
25 bitcoins, and so on, halving the amount of new bitcoins for every 210,000
blocks. With the 10 minute average block time, this means that the issuance
is halved approximately every 4 years33.

30Technically, the difficulty is adjusted every 2,016 blocks, which is equal to 2 weeks if
every block takes an average of 10 minutes.

31“The steady addition of a constant of amount of new coins is analogous to gold miners
expending resources to add gold to circulation. In our case, it is CPU time and electricity
that is expended.” [25]

32The total amount of issued bitcoins can be calculated as
∑∞

i=0 210, 000 · 50 · 2−i

33If we assume that every year contains 365.25 days, four years equate to 4·365.25·24·6 =
210, 384 blocks.

22

Note that these constants — 10 minute average block time, 2,016 blocks
before adjusting difficulty, multiplying the issuance with 0.5 every 210,000
blocks, and 50 bitcoins as the start issuance — are properties of the Bitcoin
protocol and not inherent to the blockchain technology; other coins with
their own blockchain exist with completely different constants. As an ex-
ample, Dogecoin, a less popular cryptocurrency, has an average block time
of 1 minute, adjusts the difficulty after every block, and continues to issue
5,200,000,000 units of currency every year forever.

Blockchain branches Inevitably, two miners come up with valid blocks
with different solution to the PoW, and possibly different transactions.
Broadcasting these blocks will result in a branching of the blockchain, mean-
ing that some miners will begin mining on top of block A whereas others
will mine on top of block B. All miners will however remember both blocks
in case they want to switch to the other branch.

In these cases, there is no immediate consensus on which block to use,
and the network will have to wait until another block is mined, either A′ on
top of block A or B′ on top of block B. Whichever of the A′ or B′ blocks
are mined first is then accepted by the network to be the “correct” branch,
and the blocks in the losing fork are then called orphan blocks. Of course, if
both A′ and B′ are mined at around the same time, a consensus still haven’t
been reached and we must wait for either A′′ or B′′.

Branches in the blockchain don’t happen often, and when they do they
usually just result in a single orphaned block on the then-discarded branch.
However, it has happened before that branches with up to four separate
blocks have been orphaned34.

Confirmations When we have seen that up to four blocks can be dis-
carded in favor of another blockchain branch, we have to be aware of the
opportunity of double-spending in two concurrent branches; say that Alice
transfers 1 bitcoin to Bob on branch A and transfers the same bitcoin to
Charlie on branch B. If Bob watches branch A and Charlie branch B, they
would each think that the transactions transferring money to themselves
were valid, although a conflicting transaction was on the other branch.

This risk is usually mitigated by requiring transactions to have a certain
number of confirmations before it is considered completed; if the transaction
in question is included in the latest block, it is said to have 1 confirmation.
If the transaction is included in the next-latest block, it is said to have 2
confirmations, and so on.

The defacto standard for Bitcoin merchants is to only consider a trans-
action as confirmed when it has 6 confirmations35, but depending on the

34http://bitcoin.stackexchange.com/a/4638, visited 2014-10-17
35https://en.bitcoin.it/wiki/Confirmation, visited 2014-10-17

23

http://bitcoin.stackexchange.com/a/4638
https://en.bitcoin.it/wiki/Confirmation

purpose of the transaction it could be set higher or lower, e.g., if the trans-
action is a very small amount and it is more important that the transaction
is approved quickly, for example paying for a cup of coffee, the merchant
could deem it acceptable to just have seen the transaction broadcast36 to
the network in order to accept it quickly.

The more confirmations a merchant waits for before accepting a trans-
action as completed, decides how vulnerable the merchant is to a double-
spending attack; if the transaction in question is included in block n and
they wait for the standard 6 confirmations, an attacker would have to branch
out from block n − 1 and mine his own blocks without that transaction in
them. He would then have to mine blocks n through n + 5 faster than the
rest of the network. This attack is sometimes called a 51% attack because
in order to succeed, the attacker is required to control more hashing power
than the rest of the honest network.

Block timestamps Each mined block contains the miner’s own times-
tamp at roughly the time when the block was mined. Given that different
miners inevitably will have differing clocks, each client validating a block
needs a mechanism for also validating the block’s timestamp.

The Bitcoin Wiki on Block timestamps37 defines the following rule to
validate timestamps from other peers:

A timestamp is accepted as valid if it is greater than the me-
dian timestamp of previous 11 blocks, and less than the network-
adjusted time + 2 hours. “Network-adjusted time” is the median
of the timestamps returned by all nodes connected to you.

In other words, this means that for any block n, the median timestamp of
the previous 11 blocks will always be greater than the corresponding median
for block n− 1 and less than for block n+ 1. Thus, the median timestamp
is always increasing and while the timestamps of the individual blocks can
fluctuate somewhat, the median timestamp can be viewed as a pretty stable
timestamping service.

36The merchant may decide the transaction may not even have to be confirmed inside
a block, but its mere presence on the network, without any conflicting transactions, is
enough to declare it valid.

37https://en.bitcoin.it/wiki/Block_timestamp, visited 2014-10-17

24

https://en.bitcoin.it/wiki/Block_timestamp

2.4 Bitmessage

Bitmessage is a peer-to-peer messaging protocol and network with a high
level of privacy. It uses elliptic curve cryptography at its base and also hides
message metadata like the sender and receiver of messages from network
eavesdroppers.

It shares many similarities with Bitcoin: The “Bit” prefix, many aspects
of the protocol are alike, the same elliptic curve is used, Bitmessage and
Bitcoin keys are compatible, and more.

2.4.1 High-level overview of Bitmessage

From an external point of view, Bitmessage can essentially be viewed as an
additional network transport layer that provides the following properties:

Pseudonymous messaging In Bitmessage, anybody can create a virtu-
ally unlimited number of addresses, or identities, which are used as
source and destination for private messages between the owners of
those addresses.

Decentralized, trustless messaging Bitmessage is a completely decen-
tralized and trustless peer-to-peer messaging system, meaning that
there are no central authorities or bottlenecks that the message data
has to pass through. Thus, the users of the system don’t have to in-
herently trust any particular actor in the system, but only trust the
system.

End-to-end encryption Every message sent is encrypted by the sender
in such a way that only the intended receiver(s) will be able to open
it. No one else will be able to decrypt it or even determine the sender
and recipient.

State-of-the-art cryptography Bitmessage uses elliptic curve cryptogra-
phy, which is considered among the strongest and most efficient asym-
metric cryptosystems available today.

Broadcasting functionality Bitmessage allows for broadcasting messages
to selected groups of people through two different forms of mailing list
functionality. Just as with user-to-user messages, broadcast messages
are end-to-end encrypted and it is infeasible for anyone who doesn’t
know about the mailing list to determine the sender and receivers of a
broadcast message. The mailing list functionalities are discussed more
in depth in the following sections.

Flood protection Every message sent must compute a proof-of-work prior
to sending to prove to the other nodes in the network that a not-
insignificant amount of time and computer resources has been spent

25

on this message, diminishing the economic incentive to send spam mail
and flood the network.

The above properties mean that Bitmessage provides us with a trustless,
decentralized, end-to-end encrypted message broadcasting service. We will
use exactly this as a base for our implementation.

Note, however, that Bitmessage doesn’t provide full anonymity, but
rather only pseudonymity; if one can determine the true identity behind
a Bitmessage address, the user behind the address is no longer anonymous.
However, as we shall see shortly, Bitmessage provides a mailing list func-
tionality that allows a sender to hide his own identity and identify simply
as someone who knows of the mailing list.

The basic idea driving Bitmessage

Bitmessage is realized as a peer-to-peer network, where all nodes are equal
and connected to a number of other nodes.

When someone wants to send a message, they first encrypt it38 with the
receiver’s public key, and then advertise it to all their connected nodes, who
will request the message. The nodes who have received the message will
now advertise it to their connected nodes, who will also request the message
(given that they don’t already have it), and so on until the message has
propagated through the entire network.

Once a client has received a new message, it tries to decode it with
its known private keys; if decoding is successful, the client knows that the
message was intended for them. On the other hand, if the message couldn’t
be decoded by any of the known private keys, the client can assume that
the message wasn’t bound for them.

In short, the idea is then that everybody gets every message and in trying
to decode them, decides whether or not the message is bound for them or
not. This method could arguably be described as a näıve form of Private
Information Retrieval (PIR), where every user gets all data and then must
decide if they need it.

This inevitably leads to a discussion of the scalability of Bitmessage;
given that all clients need to read all messages passing through the network,
at some point there will be enough messages to keep clients constantly trying
to decode the incoming messages. The issue of scalability has been thought
into the protocol from the beginning, and is remedied by the concept of
streams, which is discussed in more detail later in this section.

In this system, where every node has to store every message with only a
finite amount of memory available, a message expiry interval has been fixed

38As we will see later, even non-content meta-data is encrypted. The only data that isn’t
encrypted is the user’s time for creating the message, the proof-of-work and the receiver’s
stream number. More on this later.

26

at 21
2 days, meaning that nodes only store messages for a few days before

deleting them. This means that to be sure to receive all messages bound for
you, you would have to connect to the network at least every other day to
receive and try and decode all new messages before they expire.

The protocol also supports acknowledgments, or receipts, which allows
for a sender to know that a sent message has been received. In Bitmessage,
acknowledgments are hidden inside the encrypted payload of normal mes-
sages, and a receiver can, besides directly sending it to the sender, also use
a third party to relay the acknowledgment. If a sender never receives an
acknowledgment for a sent message, their client can choose to resend the
message to the receiver, hoping that it will be delivered this time [37].

2.4.2 ECC keys and addresses

Bitmessage uses the exact same elliptic curve as Bitcoin (secp256k1).
Each Bitmessage client can create and own a virtually unlimited amount

of addresses that are created on-the-fly as needed by the client.
In order to create an identity, a user needs two different private keys,

which in turn can be used to compute two different public keys. One of
these keys are used for encrypting data, and the other is used for signing
data. These keys will be denoted the encryption key and the signing key for
the rest of this paper.

A Bitmessage address starts with a BM- prefix which is followed by 32-34
characters in the Base58Check encoding39 [5], and typically looks like this:

BM-GtovgYdgs7qXPkoYaRgrLFuFKz1SFpsw40

An address is a hash of a public key encoded along with a version and
stream number. It is worth noting that given a public key and a version
and stream number, you can compute the address for that public key41, but
you cannot go back and compute the corresponding public key from a given
address.

This effectively means that in order to send a message to an address, the
sender must first know the public key used to calculate the address. The
sender can request this public key by broadcasting a getpubkey object to
the network, expecting it to reach the client who controls the address, who
in turn will reply with a pubkey object, which contains the public key along
with some additional data. These two and more object types are examined
in detail later in this section.

The Bitmessage client supports generating addresses in two ways:

39The base58 alphabet used in Bitmessage is similar to that of Bitcoin, but “many
existing libraries do not use this ordering”: https://bitmessage.org/wiki/Public_key_

to_bitmessage_address
40This is the address of a centralized mailing list related to Bitmessage System

news/announcements (https://bitmessage.org/forum/index.php?topic=1689.0)
41A brief description of the process can be found here: https://bitmessage.org/wiki/

Public_key_to_bitmessage_address (visited 2014-08-22)

27

https://bitmessage.org/wiki/Public_key_to_bitmessage_address
https://bitmessage.org/wiki/Public_key_to_bitmessage_address
https://bitmessage.org/forum/index.php?topic=1689.0
https://bitmessage.org/wiki/Public_key_to_bitmessage_address
https://bitmessage.org/wiki/Public_key_to_bitmessage_address

Deterministic address With a deterministic address, the user provides
a passphrase which is then used to derive the private keys. Using
the same passphrase yields the same address, which is useful for easy
restoration of lost private keys, but one must take care to specify a
unique passphrase; using a common word can lead to others generating
the same address.

Random address With a random address, the private keys are generated
from a randomly chosen number. It is not possible to regenerate the
address without knowing this number. Random addresses are usually
used for creating unique addresses [5]. When generating a random ad-
dress, the Bitmessage client automatically broadcasts a pubkey object
to the network.

Bitmessage uses ECIES to encrypt message payloads, which in turn uses
ECDH to generate the encryption parameters for AES-256-CBC42. In ad-
dition to this, Bitmessage uses SHA512 as Key Derivation Function (KDF)
and HMACSHA256 as Message Authentication Code (MAC) scheme [7].

2.4.3 Broadcasts/Mailing lists

In Bitmessage, two types of mailing lists exist; centralized and decentralized
mailing lists. The following paragraphs describe the two types from a high-
level perspective and then summarizes their key differences.

Centralized mailing list (CML) The centralized mailing list (CML)
or pseudo mailing list is not really a mailing list internally. Instead it is a
normal Bitmessage address that has been configured in a client to broadcast
all messages it receives [8].

When a user wants to send a message to everyone on the CML, he or
she sends a message to the CML address, which is received by the client
administering that address, and the client then broadcasts the message to
the subscribers of the mailing list.

This requires the client who operates the CML to be online in order to
broadcast the messages, thus creating a single point of failure.

The private and public keys for decrypting and encrypting messages sent
to the CML is derived from the CML address, which means that everyone
who knows the address can both send messages to and receive messages from
the CML.

Also, since the client operating the CML is responsible for re-sending the
messages it receives, the client will have to perform a new proof-of-work for
every message it broadcasts. This allows an attacker to flood the client with
messages, which will slow down or even stop the flow of genuine messages.

42AES (Advanced Encryption Standard) with a 256 bit key that uses Cipher-Block
Chaining.

28

Decentralized mailing list (DML) A decentralized mailing list (DML)
or chan, on the other hand, does not require a central authority (client) as
the centralized one does, and subscribers of the DML send messages directly
to each other instead of using a relay as the CML does. [6]

When a user wants to send a message to everyone on the DML, he or
she sends a message to the DML address, which every subscribed client then
can decrypt and read.

Unlike with the CML, the private and public keys of a DML are com-
puted from a passphrase (or chan name) in exactly the same way that the
previously mentioned personal deterministic addresses are created43. Ini-
tially, the DML creator enters only a passphrase which is then used to gen-
erate an address for the chan. Users who wish to join the DML must know
of both the passphrase as well as the generated address44.

Also unlike the CML, the DML allows for different ways of sending mes-
sages:

DML to DML The DML is specified as both the sender and receiver of the
message. “This is completely anonymous and is the default behavior.
Some users however tend to block the DML address itself using the
blacklist to reduce spam.” [6]

Person to DML The sender sends a message from one of his or her per-
sonal addresses to the DML address. “[U]seful if people block the DML
address itself (see point above)” [6]

DML to Person The receivers are explicitly specified and only those re-
ceivers will be able to decrypt the message. “This can be used, if the
user thinks the response might be useful for [specific] members of the
given DML.” [6]

Table 2 summarizes the most important differences between CMLs and
DMLs:

2.4.4 Scalability and streams

As mentioned earlier, Bitmessage is designed to remedy the inevitable prob-
lem of scalability arising from the fact that every client must read and try
to decode all messages in order to decide if the message was bound for them
or not.

43At the data level, personal and DML addresses are represented in exactly the same
way, with the exception of a chan flag being set in DML addresses and unset in personal
ones.

44From [6]: ”There is no technical difference between creation and joining a DML.
Joining requires the address to make sure that you typed the DML name correctly and to
make sure that you are using the correct stream number and address version which are
included in the address and serves as an error check for the client.”

29

CML DML

Centralized. Single point of failure. Decentralized. No single point of
failure.

Easily (centrally) moderated. No moderation. Each user
individually chooses what to read.

Spammer addresses can be Blacklisting spammers sending from
blacklisted. (but spammers the DML address also blacklists
can generate new addresses legitimate, anonymous messages.
easily) Spammers sending from another

address can be blacklisted just like
with CML.

Send messages to broadcast client Broadcast messages directly to
who in turn broadcast them to subscribers.
subscribers.

Sender is pseudonymous. Sender is anonymous when using the
DML address as the sender address.
Otherwise, sender is pseudonymous.

User must know CML address to User must know passphrase as well
send and receive messages. as DML address to send and receive

messages.

Table 2: Important differences between centralized and decentralized mailing
lists (CMLs and DMLs)

30

As the network and the amount of messages grow, at some point clients
will start using unreasonably many resources on operating in the default
mode. The creator of Bitmessage foresaw this issue, and introduced the
concept of streams [36].

In a nutshell, once the amount of messages passing through the network
reaches a certain threshold, clients begin to autonomously divide themselves
into large clusters, or streams, of clients. Once divided in such streams,
clients only broadcast messages to the stream which includes the intended
receiver.

Two different facts make this possible:

• Encoded in a Bitmessage address is the stream number of the owner
of the public key. Thus, the address dictates the stream to which
messages should be directed.

• The objects sent around on the network always include an unencrypted
stream number, so clients can decide whether or not to forward these
objects based on if they are in the right stream or not.

As of this writing, handling of streams in Bitmessage is not implemented
— there isn’t even consensus on which algorithms to use to, e.g., subdivide
the clients into streams. Although the whitepaper [36] outlines a trivial
algorithm and data structure for streams, nothing has been implemented so
far and is still being discussed in the Bitmessage forums45

As a result of this, the entire network is currently in stream number 1,
and the scalability of Bitmessage is purely theoretical at this moment.

2.4.5 The Bitmessage network protocol

The Bitmessage network protocol is conceptually quite simple; it defines six
message types and four object types [9, 10].

Messages Messages are used to initiate connections between peers, ad-
vertise known peers and objects, request objects, and inform about errors.
All message types are sent unencrypted, and as such only objects employ
encryption to hide the contents of the messages.

The six different message types are as follows:

version The version message is the first message exchanged when con-
necting to a new node, and contains information about the sender’s
client. Both ends of a new connection must advertise their version
information before they can establish a valid link. In particular, a
version message contains the following information:

45Among other topics, https://bitmessage.org/forum/index.php?topic=2550.0

compares the different proposed topologies for streams.

31

https://bitmessage.org/forum/index.php?topic=2550.0

• The version of the protocol used

• A number of flags to enable/disable features for the connection46

• The time when the message was generated and sent

• The network addresses of the sender and receiver of the message

• A random 64-bit integer used to detect connections to self

• The client’s user agent47

• A list of streams that the client is interested in.

verack Once a client has received and accepted a version message from
the other end of the new connection, he sends a verack message to ac-
knowledge the other end’s version. When both ends of the connection
have received a verack message from the other part, the connection
has been established and is ready for use.

addr The addr message informs about other known nodes on the network
and is used to ensure the robustness of the network, in the sense that
if a client decides that it has too few connections to other nodes, it can
connect to one or more new nodes mentioned in the message. After
the exchange of verack messages, nodes also exchange addr messages
to help each other connect with the rest of the network.

inv Related to the addr message, the inv message is used to advertise
known objects to peers. Other clients receiving this message check the
list of objects against their own local list of objects to see if the peer
knows of any “new” objects.

getdata When a client decides that one of its peers knows of one or more
“new” objects, it sends a getdata message to the peer containing the
identifier(s) of the needed object(s).

error This is a special error message that is used to inform other nodes
about errors. It is a part of the newest protocol specification (version
3), and “may be silently ignored”[10].

Objects Objects can be considered as the real payloads being broadcast
around the network. As mentioned before, peers can advertise knowledge
of and request objects to and from each other. In general, clients always
request advertised objects that they don’t already know.

All objects, before being broadcast to the network, must include a header
with a maximum time-to-live48 (TTL) and a proof-of-work (PoW) and will

46As of this writing, there are no defined features to enable or disable, but 8 bytes are
reserved for future uses.

47See https://bitmessage.org/wiki/User_Agent for the user agent format.
48The time-to-live indicates how for how long the object should be propagated around

the network. The maximum time-to-live for an object is 28 days [10].

32

https://bitmessage.org/wiki/User_Agent

be rejected by the other peers if the PoW is not sufficient. The PoW is
examined in more detail later in this section. In addition to this, all object
header include a stream number49.

The contents of the headers are always sent unencrypted. The headers
are designed to leak the minimal amount of information while allowing the
network to validate proof-of-work and provide support for streams.

All objects are currently restricted to a maximum size of around 256
kB [10]. There are four different types of objects:

getpubkey When a client wants to obtain the public key associated with a
known address, it broadcasts a getpubkey object, and waits for the
client controlling the known address to reply with a pubkey object.
Nothing in the getpubkey object is encrypted.

pubkey The pubkey object contains the public signing and encryption keys
as well as some short extra data for a given address and is usually50 a
response to the getpubkey object. As noted in the previous section on
addresses and keys, the keys, address version and stream number can
be combined to compute the address associated with the public key.

The pubkey object also contains two integers, NonceTrialsPerByte
and ExtraBytes, which are used to define the proof-of-work require-
ments of the public key and corresponding address. These two numbers
will be examined later in the section on proof-of-work.

The public keys, NonceTrialsPerBytes, ExtraBytes, and the signa-
ture of the object are encrypted when sent over the network.

msg The msg object may arguably be considered as the most central object
in Bitmessage. It is used for sending person-to-person messages as well
as messages involving a DML. In a msg object, only the PoW nonce,
timestamp and stream number are not encrypted — the rest, such as
the sender’s public key, the receiver’s hashed public key, the actual
message, an optional acknowledgment for another msg object and the
signature, are all encrypted.

broadcast The broadcast object is quite similar to the msg object, but
it differs in the fact that it is used for CML broadcasts instead of
person-to-person or DML messages.

Note that the specification [9] of the getpubkey and pubkey objects indi-
cate that multiple versions of the objects exist for backwards compatibility.
For our purposes we will focus only on the newest version (4).

49The stream numbers included in object headers refer to either the sender’s or the
receiver’s stream number, dependent on the object type

50When generating a random address, the client broadcasts the public key automatically

33

In contrast to earlier versions, version 4 encrypts most of the data in
the pubkey objects so only someone who knows the address corresponding
to that public key can decrypt it. This is made to prevent “people from
gathering pubkeys sent around the network and using the data from them
to create messages to be used in spam or in flooding attacks” [9].

For the curiously minded, I created a Wireshark dissector51 for the un-
encrypted parts of the Bitmessage protocol, which can be found on GitHub:
https://github.com/jesperborgstrup/bitmessage-wireshark-dissector

Message acknowledgments As hinted at, the msg object can carry an
optional acknowledgment for a previous message, which is used to inform
the sender of the previous message that this message has indeed reached the
receiver.

While directly sending an acknowledgment back to the sender could be
done, the protocol requires that acknowledgments are sent inside regular msg
objects.

If, on the other hand, an attacker with capabilities to eavesdrop the traf-
fic to and from an IP-address could send a message to Alice’s Bitmessage-
address, waiting for Alice’s client to automatically broadcast an acknowl-
edgment directly back to the sender of the original message, the attacker
would be able to link the IP-address to Alice if it could be observed that
the acknowledgment for the message to Alice originated at the specific IP-
address.

The acknowledgment data packed in the message object is itself a Bitmes-
sage protocol message, for which the PoW has already been completed. It
is the responsibility of the acknowledger to prepare this acknowledgment
message for delivery.

Once the acknowledgment message is completed, the user packs it in
another message52 (the outer message) and broadcasts this outer message.
The recipient of the outer message must then extract the acknowledgment
data (the inner message) and broadcast it to the network.

This way of packing acknowledgments inside regular messages can allow
privacy-concerned individuals to have others relay their acknowledgments
for them; say that Alice wants to inform Bob that she received his message.
Alice prepares a msg object for Bob containing the acknowledgment data
and does the Proof-of-Work for this message. She then takes this message,
and packs it in a new msg object destined for Charlie, and sends it. Once
Charlie receives this outer message, he discovers that the message contains
acknowledgment data, extracts it from the message, and broadcasts it.

51Wireshark is an open-source network packet analyzer in which it is possible to write
custom dissectors, which break down the binary contents of network packages into human-
readable data segments.

52This message could be a “regular” message with actual content, or just an empty shell
only containing the acknowledgment.

34

https://github.com/jesperborgstrup/bitmessage-wireshark-dissector

By having other clients relay your acknowledgments, the above men-
tioned attack is no longer possible since you can not prove that an acknowl-
edgment actually originated from the IP-address which first broadcasts it —
it could just as well be a näıve relay.

2.4.6 Proof-of-work (PoW)

As mentioned earler, Bitmessage employs a proof-of-work scheme intended
to make spamming or flooding the network infeasible, or at least very ex-
pensive, for an attacker. This is done by requiring some work be done by
the sender of a message to “prove” to the other clients that the message m
is sent with honest intent.

The receiver’s PoW target value t essentially dictates how “hard” the
PoW should be, or more specifically how much time the average proof-of-
work takes to calculate. The target value is calculated from two values in the
receiver’s pubkey object as well as the length Lp and time-to-live53 TTLp of
the payload [10]:

NTPB (or NonceTrialsPerByte) The amount of work that should be
performed per byte of the payload. The network default value is
1, 00054.

EB (or ExtraBytes) To make sending short messages a little more diffi-
cult, this value is added to the payload size for calculating the target
value. The network default value is 1, 00054.

t =
264

NTPB(Lp + EB) +
TTLP (Lp+EB)

216

Thus, the target value t decides the difficulty of the problem; if the
hashing function is good, its outputs are be distributed as uniformly as
possible over the output space, and the amount of attempts spent finding a
hash less than the target value is on average 264/t

Bitmessage uses the SHA-512 algorithm as the hashing function, al-
though 256 bits are only ever required, so the results of the SHA-512 are
usually truncated to 32 bytes (256 bits).

When a client receives an object55, they first check the PoW and only
advertise and relay the object to their peers if the PoW is sufficient.

The PoW is checked by calculating the hash h = H(i ||m) and rejecting if
h ≥ t. Note that relaying nodes are not aware of the receiver’s required tar-

53The time-to-live is given in seconds. getpubkey, msg and broadcast objects have a
default time-to-live of 2.5 days, while pubkey objects have a default of 28 days.

54https://bitmessage.org/wiki/Proof_of_work, visited 2014-11-07
55All objects contain an attached proof-of-work

35

https://bitmessage.org/wiki/Proof_of_work

get value56, so they use the default network values for NonceTrialsPerByte
and ExtraBytes.

2.4.7 Similarities with Bitcoin

Bitmessage shares a few similarities with Bitcoin, which, although they
aren’t critical for this thesis, are curiosities and reflect the influence of Bit-
coin on the Bitmessage project [26]:

Network Both Bitcoin and Bitmessage are decentralized, trustless, peer-
to-peer protocols.

Keys Since both Bitcoin and Bitmessage use the same elliptic curve domain
parameters (secp256k1) their keys are compatible, meaning that Bit-
coin keys can be used to receive send messages in Bitmessage and
Bitmessage keys can be used to create transactions in the Bitcoin
blockchain.

PoW As mentioned previously, the proof-of-work algorithm is essentially
the same in Bitcoin as in Bitmessage. Only difference is that Bitmes-
sage uses SHA-512 and truncates to 32 bytes, where Bitcoin uses
SHA-256 which directly returns a 32-byte hash. The reason for us-
ing SHA-512 over SHA-256 is that Bitcoin uses SHA-256 everywhere,
and “Bitmessage should use a different algorithm so that using Bitcoin
mining hardware to do Bitmessage PoWs is at least not completely
trivial.” [37].

2.4.8 Possible vulnerabilities of Bitmessage

This section lists some vulnerabilities in the implementation of the reference
client, PyBitmessage. Note that while there may be vulnerabilities in the
implementation, it doesn’t mean that the protocol is inherently flawed, but
simply that the implementation of it is.

In addition to the following points, a more thorough security analysis of
Bitmessage has been posted on the Bitmessage Forum57 by user helpinghand.

Local storage of sensitive data In the current58 implementation of the
reference client, PyBitMessage, sensitive data such as keys59 and decrypted

56Due to both the fact that only the receiver knows who the receiver is, and that the
nodes may not even know the target value even if they knew who the receiver was

57https://bitmessage.org/forum/index.php?topic=1666.0
58Git commit b02a5d31...7944f813 of November 13th 2014
59In Windows, private keys and information related to the keys are stored in the

%USER%/Appdata/Roaming/PyBitmessage/keys.dat configuration file. On Linux, the file
can be found at ~/.config/PyBitmessage/keys.dat.

36

https://bitmessage.org/forum/index.php?topic=1666.0

messages60 are stored in plain-text on the local computer.
It would be no problem for malware and the like to sweep both keys

and messages from anyone using PyBitmessage. To remedy this issue, the
data could be encrypted with a password that the user enters on Bitmessage
startup. This would at least make it non-trivial for malware to steal keys and
messages, since the software now also would have to incorporate a keylogger
to steal the password from the user before the keys and messages could be
decrypted.

Using acknowledgments to deanonymize users As mentioned, the
msg object packs optional acknowledgment data. In the current61 implemen-
tation of the reference client, PyBitMessage, any node that receives some
acknowledgment data packed inside a msg object obliviously broadcasts this
data to the network.

This knowledge could be used to deanonymize users in much the same
way that relaying of acknowledgments is supposed to prevent; say that an
attacker can eavesdrop on traffic to and from a list of IP-addresses and
suspects that Alice is using Bitmessage on one of those IP-addresses. The
attacker knows Alice’s suspected Bitmessage-address, and sends an ordinary
msg object, also containing some acknowledgment data, to that address. If
Alice is indeed using the suspected address, her client will decrypt the outer
message, see the acknowledgment data packed inside it, and broadcast this
acknowledgment data to the network. The attacker would then be able to
see that the broadcast of the raw acknowledgment data originated at some
IP-address and link the suspected Bitmessage-address to the IP-address,
thus deanonymizing the user using those addresses.

I posted this issue to the Bitmessage forums62 and was informed that this
is only a flaw in the implementation, and not the protocol itself; there exists
in the protocol (in the pubkey object) a number of flags, and one of these
flags signifies that they refuse to relay ackdata. However, this only exists at
the protocol level, and there is currently no way to enable or disable that
flag for your addresses through the user interface.

Everyone cannot use TOR If a user connects to the Bitmessage network
through the anonymization network TOR, their communications with the
outside world would essentially be encrypted and nearly impossible to track.

Although the PyBitmessage client supports using TOR63, the default

60In Windows, decrypted sent and received messages, etc. are stored in a SQLite
database in the %USER%/Appdata/Roaming/PyBitmessage/messages.dat file. On Linux,
the database is stored at ~/.config/PyBitmessage/messages.dat.

61Git commit b02a5d31...7944f813 of November 13th 2014
62https://bitmessage.org/forum/index.php?topic=4132.0
63Support for TOR is realized indirectly through a SOCKS5 proxy, which the PyBitmes-

sage client inherently supports.

37

https://bitmessage.org/forum/index.php?topic=4132.0

setting is to not route the traffic through it. The problem is that when
you connect to the Bitmessage network through TOR, you can only create
outgoing connections, not accept incoming.

If everyone on the Bitmessage network used TOR, then there would be
no one accepting incoming connections to connect to, and the network would
break. However, if Bitmessage and TOR would have complete support for
the IPv6 protocol, everyone inside the TOR network would essentially have
an externally-visible IP address to accept incoming connections, and the
described problem would no longer exist64.

64http://sourceforge.net/p/bitcoin/mailman/message/29066245/ has a relevant,
but short discussion of the usage of TOR with Bitcoin, visited 2014-10-17

38

http://sourceforge.net/p/bitcoin/mailman/message/29066245/

2.5 Invertible Bloom Lookup Tables

Invertible Bloom Lookup Tables (IBLT’s) are a relatively new (2011) data
structure [20] based on Bloom filters [11]. IBLT’s support inserting and
deleting key-value pairs to and from the table, querying a key to get its
value, and listing the contents of the table, all while taking up significantly
less space than an ordinary list. The trade-off is that querying and listing
elements are not guaranteed to return the correct answer, but are instead
probabilistic in nature, here signifying that querying for elements can return
false negatives, and listing elements may return an incomplete list of the
elements inserted into the set.

Instead of using an ordinary hashmap to store n elements, which would
require O(n) space, an IBLT only requires O(t) space, where t is the thresh-
old value; the number of elements in the table below which querying and
listing are very likely to succeed. An important limitation to IBLT’s is that
both keys and values need to have fixed maximum sizes, which define the
size of the data structure.

2.5.1 Bloom filters

The Bloom filter [11] is a well-known probabilistic data structure that sup-
ports inserting elements into a set and then testing whether or not an element
is a member of this set. The key differences between, say, an ordinary list
and a Bloom filter are the space-efficiency of the Bloom Filter and the fact
that false positive matches are possible, while false negatives are not. These
properties are related in the sense that the space saved by using a Bloom
Filter results in not being 100% accurate when querying the filter.

A Bloom filter works by using a binary array65 T and k random hash
functions h1, · · · , hk. To insert an element into the set, one sets T [hi(x)] = 1
for all h1 · · · , hk. To query the filter for membership of an element, one
checks that T [hi(x)] = 1 for each of the hash functions. If at least one of the
T [hi(x)] = 0, we are sure that the element was never inserted into the filter,
but if all T [hi(x)] = 1, then the element was probably inserted previously,
but with some risk of a false positive.

2.5.2 Introduction to IBLT

Although the Bloom filter is very useful for simple set membership checks,
it would be nice if we had a similar data structure, which would allow for
key-value lookups, deletion of key-value pairs and listing the pairs in the set.
Luckily, the Invertible Bloom Lookup Table [20] by Goodrich et al. (2011)
has just these extra properties and is originally based on Bloom filters.

65The binary array is initially filled with all zeroes

39

Their paper mentions a few use cases; database reconciliation, tracking
network acknowledgments, and oblivious selection from a table. We will pri-
marily use this data structure for the first purpose, database reconciliation.
The advantage of an IBLT over an ordinary hash map or the like, is that
the IBLT takes space bounded by O(t), where t is so predefined threshold
value, instead of O(n) where n is the number of elements in the map. This
threshold value t signifies a“divide”where the table gives results very similar
to a corresponding hash map when n ≤ t, but breaks down66 when n > t.

A key feature of the IBLT is that if n has been greater than t at some
point, but is later reduced to below the threshold value by removing existing
key-value pairs, the table once again works as expected even though the
number of pairs contained in the table temporarily was arbitrarily high. In
fact, if n never exceeds t, using an IBLT would actually require more space
than a simple list of key-value pairs. In this regard the value of using an
IBLT is that the the size is constant no matter how many key-value pairs
we insert or delete.

Throughout the remainder of this section, we will assume that all keys
are distinct, i.e., that no key x is present in the table more than once at
any given time. Despite this assumption, the paper [20] has suggestions for
tolerating multiple inserts or deletes of the same key.

I have implemented and open-sourced a functioning IBLT in Python,
which can be found on GitHub: https://github.com/jesperborgstrup/

Py-IBLT

Database reconciliation One use of IBLTs, as mentioned, is in the area
of database reconciliation. Imagine that Alice and Bob each have a database
and want to discover the differences between their databases. An IBLT
makes this possible while the data exchanged is much less than actually
sending their entire databases to each other. As mentioned, each IBLT
has a threshold value t, which is approximately the maximum number of
key-value pairs that the table can hold while still being able to correctly
do key-value lookups and exhaustively list the contents of the table. This
means that the threshold value t should not be set to the number of entries
in their respective databases, but just the expected number of differences
between their databases.

Now, for Bob to deduce the differences between the databases, Alice
simply has to create an IBLT with a reasonable t, fill it with the entries
from her database (A), send it to Bob67, and Bob then takes this table and
deletes from it the entries from his own database (B). Once he has done
this, he can request a complete listing of (1) the entries which are in Alice’s

66Breaking down here means returning inconclusive results to queries and incomplete
listings

67Remember that the size of an IBLT is O(t)

40

https://github.com/jesperborgstrup/Py-IBLT
https://github.com/jesperborgstrup/Py-IBLT

database but not in his own (= A \B) and (2) the entries which are not in
Alice’s database but are in Bob’s (= B \A).

So, here we have a way of discovering differences between remote datasets
that is bounded in size not by the number of entries in each sets, but by
the number of expected differences between the sets, which may be orders
of magnitude lower if the datasets are similar.

2.5.3 The operations of an IBLT

An Invertible Bloom Lookup Table (B) supports the following operations:

Insert(B, x, y) Inserts the key-value pair (x, y) into the table B. This
operation always succeeds.

Delete(B, x, y) Removes the key-value pair (x, y) from the table B. This
operation always succeeds. If (x, y) /∈ B, the pair is stored in the table
as a “negative insert”, which can be detected and retrieved later on.

Get(B, x) Returns the value y if there exists a key-value pair (x, y) ∈ B.
The operation can give the following results:

• (NoMatch) : It is certain that no key-value pair (x, y) exists in
B.

• (Match, y) : The key-value pair (x, y) was in B.

• (DeletedMatch, y): The key-value pair (x, y) was deleted from B
without being inserted. Thus, this is a “negative” match.

• (Inconclusive): It was not possible to determine with certainty
if the key x existed in B.

ListEntries(B) Returns a list of all the key-value pairs in B. This oper-
ation returns one of two results:

• (Complete, [(x0, y0), · · · , (xn, yn)]) All n key-value pairs in B were
retrieved.

• (Incomplete, [(x0, y0), · · · , (xr, yr)]) Only r key-value pairs were
retrievable from B.

Depending on the implementation of this operation, the resulting key-
value pairs could also be divided into two lists — one with inserted
entries, and one with entries that were deleted without being inserted.

The Inconclusive result of the Get operation and Incomplete from
ListEntries usually stems from the number of key-value pairs n in B being
higher than the threshold value t. It could also happen if the same key was
inserted multiple times.

41

2.5.4 The inner workings of the IBLT

When an IBLT B is created, it initializes a lookup table T with m cells.
Each cell stores a constant number of fields. This number is determined
from the desired maximum length of keys and values in the table. Almost
as with the ordinary Bloom filter, each key-value pair (x, y) is stored in the
cells T [h1(x)], · · · , T [hk(x)], where k is the number of hash functions used
and hi is the ith hash function.

In the simple version of the IBLT, each cell contains three fields:

• A count field, which counts the number of entries that have been
mapped to this cell68,

• a keySum field, which is the sum of all keys mapped to this cell, and

• a valueSum field, which is the sum of all values mapped to this cell,

With these fields, the two opposite Insert and Delete operations are
defined as follows:

function Insert(B, x, y)
T ← B.T
for each distinct hi(x), for i = 1, · · · , k do

add 1 to T [hi(x)].count
add x to T [hi(x)].keySum
add y to T [hi(x)].valueSum

end for
end function

function Delete(B, x, y)
T ← B.T
for each distinct hi(x), for i = 1, · · · , k do

subtract 1 from T [hi(x)].count
subtract x from T [hi(x)].keySum
subtract y from T [hi(x)].valueSum

end for
end function

Now that we have seen how to insert and remove to and from the table,
let’s look at how we can retrieve data:

68Theoretically, if we don’t provide an bound for this value, the size of the IBLT is
actually O(t · log logn) instead of O(t). However, in practice we can usually assign a
constant 4 or possibly 8 bytes for this field, allowing counts of up to 231 − 1 or 263 − 1,
respectively.

42

function Get(B, x)
T ← B.T
for each distinct hi(x), for i = 1, · · · , k do

if T [hi(x)].count = 0 then
return (NoMatch)

else if T [hi(x)].count = 1 then
if T [hi(x)].keySum = x then

return (Match, T [hi(x)].valueSum)
end if

else if T [hi(x)].count = −1 then
if T [hi(x)].keySum = −x then

return (DeletedMatch, −T [hi(x)].valueSum)
end if

end if
end for
return (Inconclusive)

end function

Essentially, the Get operation goes through all the cells in T that the hash
functions hi map to, and if one of the cells has a count of 0, we can be sure
that the key isn’t currently in the table69.

On the other hand, if the cell has a count of 1, while having keySum = x,
we know that the cell contains only the key-value pair (x, y) and we can
return the value with certainty. The same goes for cells with a count of −1
and keySum = −x, which translates to a key-value pair (x, y) that has been
deleted without being inserted, and we can return that as well as a flag that
indicates that this is a deleted pair.

If none of the above cases were satisfied, we cannot know if the key has
been inserted into the table or not, and we must then return (Inconclusive)
to signal this uncertainty.

With the Get operation covered, the final operation looks as follows:

function ListEntries(B)
Result← [] . Create output list
W ← B.T . Create working copy W of B.T
while there exists an i ∈ [1,m] such that W [i].count = ±1 do

if W [i].count = 1 then
add the pair (W [i].keySum,W [i].valueSum) to Result
Delete(B,W [i].keySum,W [i].valueSum)

else if W [i].count = −1 then
add the pair (−W [i].keySum,−W [i].valueSum) to Result

69If two distinct keys k1 and k2 map to the same cell c0, and k1 is inserted while k2 is
deleted, we also get a cell count in c0 of 0. The following Section 2.5.5 shows how to deal
with this case.

43

Insert(B,−W [i].keySum,−W [i].valueSum)
end if

end while

if there exists an i ∈ [1,m] such that W [i].count 6= 0 then
return (Incomplete,Result)

else
return (Complete,Result)

end if
end function

The ListEntries operation searches through the lookup table T looking
for cells with count = ±1; these cells contain only one inserted or deleted
key-value pair, and can as such be stored in the result list and then removed
from the lookup table, possibly changing other cells’ counts to 1 or −1,
which can then be used to extract another key-value pair.

This find/remove cycle continues until no more cells with count 1 or −1
exist, and the operation returns the result list along with either Complete
if all cells now have a count of 0, or Incomplete if at least one cell contains
a non-zero count.

Note that the Get and ListEntries operations provided above are
modified from the original simple version in the paper to include support
for recovering deleted key-value pairs. This addition is indeed described in
the paper, along with some other additions to introduce additional fault
tolerance to the IBLT:

2.5.5 Handling extraneous deletions

This section shortly describes one of the so-called fault tolerance mechanisms
described in the IBLT paper.

The other fault tolerance mechanisms (multiple values for the same key,
duplicate inserts/deletions of the same key-value pair, and fault tolerance to
lost memory subblocks) are omitted as they won’t be used in this thesis.

Let’s consider the case where two key-value pairs with distinct keys
(k1, v1) and (k2, v2), which both map to the same cell (a shared cell), have
been inserted, and then a third pair (k3, v3), which coincidentally also maps
to the same shared cell, is deleted (without a corresponding insert). This
leaves the shared cell with a count of 1, which would cause the Get and
ListEntries operations to regard (k1 + k2 − k3, v1 + v2 − v3) as a valid
key-value pair, which is obviously wrong.

This is mitigated by adding a fourth field, hashkeySum, to each cell,
which contains the sum of hashes of all keys mapped to that cell. Note that
the hash function used for hashing the key should be different than any of
the k hash functions used to determine the cells in which to map a key.

44

When inserting or deleting entries, the Insert and Delete now also
adds or subtracts the hash of the key in the hashkeySum field. And the Get
and ListEntries operations checks that the hash of the key matches the
hashkeySum before accepting a key-value pair as valid.

The size of the hashkeySum field must be of sufficiently many bits to
make collisions sufficiently unlikely. If we use, e.g., 128 bits for this field,
collisions will occur with a probability of 2−128, which for our purposes can
be viewed as a negligible probability.

This way, we can detect and discard invalid key-value pairs resulting
from extraneous deletions. However, we cannot necessarily discover the
inserts and deletes that lead to this state.

2.5.6 The threshold value t

The threshold value t determines approximately how many entries the IBLT
can hold before ListEntries starts returning inconclusive results with a
non-negligible probability [20]:

As long as m is chosen so that m > (ck+ε)t for some ε > 0, ListEntries
fails with probability O(t−k+2) whenever n ≤ t.

The threshold value is dependent on m, the number of cells in the lookup
table and k, the number of random hash functions used to map a key to cells.
Or, more specifically, t = m/ck, where ck is calculated from k:

ck = 1 / sup
{
α : 0 < α < 1;∀x ∈ (0, 1), 1− e−kαxk−1

< x
}

The following table shows sample ck values for small values of k:

k 3 4 5 6 7

ck 1.222 1.295 1.425 1.570 1.721

Table 3: ck values for k = 3, 4, 5, 6, 7 [20]

For example, to achieve a threshold value of t = 100 while using k = 5
hash functions, one would choose m to be approximately 143:

100 = m/1.425⇔ m ≈ 143

2.5.7 The size of an IBLT

The amount of space required to hold an IBLT depends on the parameters
used to instantiate it; in particular, the following parameters determines the
size of an IBLT:

45

Cell count (m) The cell count is one of two determining factors, and the
resulting size of the IBLT is linear to m.

Cell size (c) The cell size is the other factor, and is the sum of the size of
the fields in each cell:

count (cc) can safely be set to 4 bytes, allowing for counts between
−231 and 231 − 1.

keySum (ckey) should be big enough to contain the longest possible
key. If, e.g., keys are SHA-256 hashes, ckey should be set to 32
bytes.

valueSum (cval) should, just as ckey, be big enough the contain the
longest possible value, or, more correctly, should be as big as the
longest value you want to be able to retrieve. Setting cval to a
smaller value will truncate larger values to fit into cval bytes.

hashkeySum (chkey) should be set big enough to avoid collisions be-
tween different keys as described in Section 2.5.5.

Constants (c0) We also need to encode the above mentioned values to
ensure that a receiver will be able to correctly decode and use the
IBLT. This can safely be regarded to take up 8 bytes, one byte for
each of the above, and one byte for k, the number of hash functions.

With these values in place, we can calculate the size requirements of an
IBLT:

m · c+ c0 = m(cc + ckey + cval + chkey) + c0

As an example, an IBLT with the parameters t = 100 ⇒ m ≈ 143,
cc = 4, ckey = 32, cvalue = 64, and chkey = 16 will take up around 16
kilobytes of space:

143(4 + 32 + 64 + 16) + 8 = 143 · 116 + 8 = 16, 596 B ≈ 16 kB

This IBLT has a threshold value t close to 100, allows for cell counts up
to 231 − 1, has keys up to 32 bytes and values up to 64 bytes, and 16 bytes
is used for storing the hash sums of the keys.

2.5.8 Using an IBLT to store only keys

The IBLT data structure as described so far is a key-value store where each
key has a corresponding value, which is stored and retrieved along with the
key in all the operations. If we don’t need that functionality, but simply
want to use the IBLT as a space-efficient storage mechanism for a list of
keys, we can fairly easily do that:

We can either redefine all four operations to not include values and re-
move the now-unneeded valueSum field from each cell. This isn’t very hard

46

to do, but there is an easier option: We can simply set the size of all value-
Sum fields to be 0 bytes. This way, no space is used to store values, and we
can simply use empty values when inserting/deleting keys, and ignore the
empty values when retrieving keys.

Using the same values from the last section, but without the valueSum

field, we can calculate the size needed for a key-only IBLT with a threshold
value close to 100, with 32 byte keys and a 16 byte hash sum of the keys.
Removing the 64-byte value fields gives us a size of around 7 kilobytes:

143(4 + 32 + 0 + 16) + 8 = 143 · 52 + 8 = 7, 444 B ≈ 7 kB

As we shall see in Section 3.5.3, we will use a key-only IBLT as a central
data structure for timestamping many keys at once.

47

2.6 Voting theory

Throughout time many different voting schemes have been invented and used
for deciding on politics or electing leaders of a group. All of these schemes
can have the following desirable properties in a greater or lesser degree —
usually there is a tradeoff involved between some of the properties:

• Integrity

• Verifiability

• Privacy/anonymity

• Coercion resistance

The following paragraphs will define these properties further:

Integrity The integrity of a voting scheme is determined by how much the
results of the election can be tampered with. Ideally, it should be impossible
for anyone to alter the results in any way, but usually there will be some
risk that the final results can be altered.

Verifiability When discussing verifiability, we generally distinguish be-
tween two aspects of it — individual verifiability and universal verifiability.

The degree of which any individual voter can be convinced that their
own vote is included in the final tally is called individual verifiability.

On the other hand, the extent to which anyone can check that the election
results are correctly computed given the individual votes is denoted universal
verifiability.

Privacy/anonymity Privacy and anonymity measures how much of a
voter’s identity is kept secret when voting and during the subsequent pro-
cesses of the voting scheme.

Ideally, it should be impossible for anyone the deduce the identity behind
any given vote.

Coercion resistance Coercion resistance is a measure of how much the
system is able to prevent coercion of voters to vote in a certain way.

In order to prevent coercion, among other things, a voter should not be
able to prove to anyone how they have voted. If they cannot prove to a
malicious third party that they voted in a specific way, they can still claim
that they did with no way to prove them wrong or right.

Also, filling out and casting the ballot should be done in private so no
coercer can monitor and influence this process.

48

2.6.1 Information contained in a ballot

Another somewhat important aspect of an election is the amount of infor-
mation that a voter must provide to fill out the ballot; if the election is just
a simple yes/no question, the voter only needs to provide one bit of informa-
tion. On the other hand, if the ballot is more complicated, e.g., “list these 10
candidates in order from most to least desired”, the ballot essentially allows
for 10! = 3,628,800 different combinations, or almost 22 bits of information.

The amount of information to be encoded in the ballot is important
because if that amount is large enough compared to the amount of voters, an
entity could coerce a number of voters to vote a combination that is specific
for exactly one voter. The entity could then later compare the combinations
on the publicly available ballots in order to find out who (if any) has not
voted as they were ordered, and thus corrupt the election. This attack is
sometimes known as the “Italian Mafia attack” or the ballot-as-signature
attack [16].

2.6.2 Consequences of an online voting scheme

It is worth noting that a great deal of coercion resistance is lost if a voting
scheme allows for online voting; as soon as the actual vote casting is taken
away from the controlled, private environments such as voting booths, it
becomes significantly harder to enforce privacy in the vote-casting moment.

As an example, one could imagine the scenario where a family of eligible
voters are coerced by the father who wishes to force everyone to vote in a
certain way. It is virtually impossible to prevent such a malicious person
from succeeding in coercing his peers.

This issue can be partly mitigated by the introduction of re-voting (dis-
cussed later in Section 4.1) where a coerced person later can discard his
compromised vote and fill out the ballot differently when the coercer has
left.

An obvious advantage of using an online voting scheme over an tradi-
tional, offline one, is the cost required to run an election. Where the tradi-
tional approach requires many man-hours of planning and executing, along
with the cost of printing ballots and obtaining available locations for the
polling stations, an online approach is orders of magnitude cheaper — the
costs of running the election, printing ballots and finding locations are very
small. This would allow for having elections way more often and for things
that haven’t traditionally been considered as worth running an election for.

49

2.7 Linkable ring signatures

Linkable ring signatures is a signature scheme published by Liu et al. in
2004 [23]. Put shortly, it allows anyone to compose a list, or ring, of identities
(i.e., public keys) and sign a message on behalf of the entire ring without
revealing which of the identities actually signed the message. In addition
to this, the signatures are linkable, which means that two signatures from
the same identity can be easily linked, so it is possible to detect if someone
in the ring has signed more than one message, but without disclosing the
identity of that signer.

Linkable ring signatures are also known under the more explicit name
linkable spontaneous anonymous group signature for ad hoc groups.

Anonymity or rather signer indistinguishability, meaning that it is infeasi-
ble to determine which identity in the ring created the signature with
better probability than random guessing.

Linkability is the ability to link two signatures from the same signer. The
anonymity of the signer is still preserved.

Spontaneity meaning that the ring doesn’t have any set-up phase and any-
one can create the signature without asking the permission of the other
identities or a group leader, as is the case with group signatures [13].

The following pages will give a brief overview of group signatures70, ring
signatures and linkability in ring signatures. Finally, a linkable ring signature
adaption for elliptic curves will be presented.

Group signatures The notion of ring signatures is related to a similar,
but in some ways different type of signatures, the group signature, which
was first published in 1991 [13]. Put shortly, “Group signatures are useful
when the members want to cooperate, while ring signatures are useful when
the members do not want to cooperate” [30].

Ring signatures The idea of ring signatures were first published in 2001 [30].
Ring signatures differ from group signatures in the following ways:

• Group signatures require a trusted group manager who defines the
group and distributes keys specifically made for that group, and as an
inherent consequence of this...

• Group signatures require an initial set-up phase in which the group
manager sets up the group, whereas ring signatures are created ad hoc
with the signer defining the ring and creating the signature at the same
time.

70Group signatures can be viewed as the predecessor to ring signatures

50

• Group signatures are usually constant sized as opposed to ring signa-
tures which are usually linear in size to the number of members in the
ring71.

Linkability in ring signatures Linkability [23] — the property that al-
lows a signature verifier to determine if two signatures come from the same
private key — is designed as a tag which is intrinsically linked to a specific
private key in a specific ring. Any verifier can compare the tags from two
ring signatures to see if they come from the same signer identity. Note how-
ever that the two rings must be exactly equal for the tag to be usable; this
means that the rings must consist of the same members in the same order72.

2.7.1 Linkable ring signatures over elliptic curves

The original paper on linkable ring signatures [23] describes how to sign and
verify with RSA instead of elliptic curves, so I had to adapt the provided
algorithms to operate on elliptic curve points instead of RSA prime numbers.
I wrote a blog post73 about this, and will include the adapted algorithms
below. Note that I do not take credit for anything other than adapting the
original algorithms to operate on elliptic curves, and some of the language
in the following specification is taken directly from the paper:

Let p denote a large prime number, E denote an elliptic curve, G denote
a base point on the elliptic curve E with order p. Let H1 : {0, 1}∗ → Zp
and H2 : {0, 1}∗ → Zp be some statistically independent cryptographic hash
functions. For i = 0, 1, · · · , n−1, each user i has a distinct public key Yi and
a private key xi such that Yi = xiG. Let L = Y0, Y1, · · · , Yn−1 be the list of n
public keys. Let MapToPoint(x,E) be a function that injectively maps an
integer x ∈ [1, p−1] to a point on the curve E, such as the try-and-increment
algorithm described in Section 2.1.5.

Signing Given message m ∈ {0, 1}∗, the signer, with index π, has private
and public keys xπ and Yπ.

1. Compute H = MapToPoint(H2(L), E) and Ỹ = xπH

2. Pick a random u ∈ Zp, and compute

cπ+1 = H1(L, Ỹ ,m, uP, uH)

71Ring signatures that are sublinear in size have been proposed, see introduction of Au
et al. [3].

72A simple way to agree on the order in a decentralized way is to sort the list of members.
73https://jesper.borgstrup.dk/2014/04/linkable-ring-signatures-over-elliptic-curves/

51

https://jesper.borgstrup.dk/2014/04/linkable-ring-signatures-over-elliptic-curves/

3. For i = π+1, · · · , n−1 and 0, · · · , π−1, pick si ∈R Zp, and compute74

ci+1 = H1(L, Ỹ ,m, siP + ciYi, siH + ciỸ)

4. Compute sπ = u− xπcπ mod p

The signature is σL(m) = (c0, s0, · · · , sn−1, Ỹ).

Ỹ is the signer’s unique tag for this exact ring. If they are to sign another
message with the exact same ring, the tag will be the same and thus anyone
can link two signatures simply by comparing the tags.

However, if the rings aren’t exactly the same, even if the keys in the ring
are just in a different order, the tag will also be different and thus unusable
for linking any two signatures.

The ci values“wrap around”to form a ring, as shown in Figure 3. Each ci
value (except cπ+1) is computed from the previous value: cπ+2 is computed
from cπ+1, cn−1 is computed from cn−2, c0 from cn−1, c1 from c0, and finally
cπ is computed from cπ−1, “tying the knot” to form the ring.

Figure 3: The n values in a linkable ring signature “wraps around”, forming
a ring where each link is equally likely to have been the value with the

signer’s index π.

The signer indistinguishability property of this signature scheme arises
from the fact that the signature does not reveal the index π of the signer’s
key, and the signature verifier cannot determine this index because, although
he can reconstruct all the ci values, the cπ appears to fit right in the ring
exactly as all the other ci values.

74The values “wrap around”, as described later, meaning that the c0 value is computed
as: c0 = H1(L, Ỹ ,m, sn−1P + cn−1Yn−1, sn−1H + cn−1Ỹ)

52

In much the same way, the sπ value cannot be identified: All the other
si values are randomly chosen from Zp. The sπ value is computed mod p
and cannot be distinguished from the other, random values.

Verifying The signature σL(m) = (c0, s0, · · · , sn−1, Ỹ) on a message m
and a list of public keys L is verified as follows:

1. Compute H = MapToPoint(H2(L), E) and for i = 0, · · · , n − 1,
compute the following:

Z ′i = siP + ciYi

Z ′′i = siH + ciỸ

ci+1 = H1(L, Ỹ ,m,Z ′i, Z
′′
i), if i 6= n

2. Check whether c0 = H1(LỸ ,m,Z ′n−1, Z
′′
n−1). If yes, the signature is

valid. Otherwise, it is not.

2.7.2 Size of a linkable ring signature

As noted previously, the size of a ring signature is linear to the number of
public keys in the ring. Specifically, a linkable ring signature for a message
m consists of the following tuple:

(c0, s0, · · · , sn−1, Ỹ)

c0, s0, · · · , sn−1 ∈ Zp, Ỹ ∈ Zp × Zp

This gives us n+ 3 integers in Zp. If we use the secp256k1 elliptic curve
as used in Bitcoin and Bitmessage, we have the field size p < 2256 meaning
that each of the n + 3 integers can be stored with 256 bits or 32 bytes of
space. This gives us the following size:

The size of a linkable ring signature on the secp256k1 elliptic curve
with n public keys in the ring is 32n+ 96 bytes.

2.7.3 Mapping directly to the curve

As the first step of the signing algorithm, we compute the following values:

H = MapToPoint(H2(L), E)

Ỹ = xπH

53

One could ask why should we even bother using the MapToPoint func-
tion when we could just compute H = hG, where h = H2(L) · G and G is
the generator point of the curve.

It turns out that if we compute the H point this way, we make it possible
for an attacker to determine the public key corresponding to the tag Ỹ given
the list of public keys. We only need to realize the following:

Ỹ = xπH = xπ(hG) = h(xπG) = hYπ

We now see that the tag Ỹ is equal to the public key Yπ multiplied by
h, which is something that the attacker can easily check.

If we instead compute H = MapToPoint(h,E), it is no longer possible
to deduce the public key behind the tag this way, because we map the hash
h onto the curve without multiplication.

54

3 The decentralized deadline consensus protocol

In this section I present a protocol for achieving consensus of valid messages
sent before a deadline in a decentralized manner. We will make no assump-
tions about the content of the messages or how to combine them to a result,
if desired at all.

The protocol builds on top of a shared bulletin board, and is designed to
delegate the interpretation of messages to a higher level message interpreta-
tion layer (MIL), as pictured in Figure 4. Section 3.1 outlines our require-
ments for the bulletin board. Sections 3.2 and 3.3 describe how we will use
the Bitcoin blockchain for defining deadlines and timestamping messages.
The details of the protocol are described in Sections 3.4 and 3.5. Finally,
the message interpretation layer is described in detail in Section 3.6.

Figure 4: The deadline consensus protocol builds on top of a shared
bulletin board and exposes an interface for a interpreting the messages to a

higher-level message interpretation layer.

3.1 A shared bulletin board

For this protocol, every participant needs access to post to and read from
a shared and anonymous bulletin board. It should be anonymous in the
way that it isn’t possible to determine which IP address a message came
from. The messages we want to create a consensus around are posted to
this bulletin board, and every participant is allowed to read any message on
the board.

This bulletin board must support the following two methods:

• PostMessage(message): This method anonymously posts a new
message to the board.

• MessageReceived(message): This is a callback method which will
inform our protocol that a new message has been posted.

55

3.2 Deadlines on the Bitcoin blockchain

As mentioned in Section 1.2, we will define deadlines by means of a blockchain.
In doing this, we want to be sure that the answer to the question “Has this
deadline passed?” gives the same answer, no matter where in the world the
question is asked. This ensures a canonical deadline which everybody can
verify, but nobody has absolute control over.

The following section defines the adjusted block timestamp for the Bitcoin
blockchain.

3.2.1 The adjusted block timestamp

A problem with the timestamps of the blocks on a decentralized blockchain
is that they are the time provided by the miner who mined the block. This
means that these timestamps cannot directly be used since the clocks of dif-
ferent miners can differ a lot. As an example, Table 4 shows the timestamps
of blocks 326125-326144 on the Bitcoin blockchain. Note that blocks 326137
and 326141 appear to have been mined before the previous blocks. Obvi-
ously this isn’t what happened, since each block contains proof75 of being
mined after the previous block. Instead, these anomalies are a result of the
different miners’ own clocks being different.

The blockchain, however, does have a mechanism in place to ensure that
the block timestamps don’t differ too much. Recall from Section 2.3.2 the
following rule:

A timestamp is accepted as valid if it is greater than the median
timestamp of previous 11 blocks, and less than the network-
adjusted time + 2 hours. “Network-adjusted time” is the median
of the timestamps returned by all nodes connected to you.

Note that the timestamp of a new block must be greater than the median
timestamp of the previous 11 blocks. This in effect ensures that the median
timestamp of blocks n−10 through n is greater than the median timestamp
of blocks n− 11 through n− 1. Another way to put this is that we can be
sure that the median timestamps are constantly increasing, while we cannot
be sure about the same thing for the individual block timestamps. If we
want to enforce deadlines with a blockchain, we have to be certain that a
new block cannot set the time back and “undo” the deadline.

For brevity, when we mention the median timestamp of a single block
n, we will actually refer to the median timestamp of blocks n− 10 through
n. Figure 5 is a visualization of the blocks used to verify the timestamp of
a new block on the blockchain.

In addition to the block timestamps, Table 4 also shows, for each block,
the median timestamp of the blocks, and the time difference between the

75This proof is the hash of the previous block included in the block.

56

Blocks in median timestamp of block n︷ ︸︸ ︷
Block
n−10

Block
n− 9

· · · Block
n− 1

Block
n

Block
n+ 1

Figure 5: In order for a new block n+ 1 to be accepted on the blockchain,
its timestamp must be greater than the median timestamp of the previous

11 blocks (the median timestamp of block n).

block’s timestamp and the median. We can expect the block’s median times-
tamp to be, on average, 50 minutes behind the block’s reported timestamp:
If the block in question is n, then the median timestamp will be selected
from blocks [n− 10;n], and if each block takes an average of 10 minutes to
mine, block n − 5 will have the median timestamp and will on average be
5 · 10 = 50 minutes behind block n. We call this interval of 50 minutes the
adjustment constant.

Thus we can add 50 minutes to the median timestamp in order to get
a fair estimate of the time of block n, which we will call the adjusted block
timestamp. Note that the average difference between the block timestamp
and the adjusted timestamp for all 20 blocks in Table 4 is around 3 minutes
— which is pretty close, although we can observe larger differences at times,
such as the 122 minute difference in block 326132. Because the time for
mining a single block is relatively unpredictable, these fluctuations will occur
but will be flattened over time because the average time to mine blocks is
fixed.

When we use the Bitcoin blockchain to get the current time, we do so
by means of the adjusted block timestamp:

The adjusted block timestamp for a block n on the Bitcoin blockchain
is the median timestamp of the blocks [n− 10;n] plus 50 minutes.

3.2.2 Algorithms for adjusted block timestamps

This section describes three algorithms for working with adjusted block
timestamps:

GetMedianBlockTimestamp(block): Compute the median block times-
tamp for a given block

GetAdjustedBlockTimestamp(block): Compute the adjusted block times-
tamp for a given block

GetFirstBlockWithAdjustedTimestamp(time): Find the first block
whose adjusted timestamp is greater than or equal to a given times-
tamp, or NULL if no such block exists.

57

Block Block Adjusted Difference
height timestamp timestamp (seconds)

326125 05:08:30 05:14:22 0:05:52 (352)
326126 05:09:35 05:19:09 0:09:34 (574)
326127 05:18:51 05:34:37 0:15:46 (946)
326128 05:34:46 05:50:44 0:15:58 (958)
326129 05:47:02 05:54:20 0:07:18 (438)
326130 06:18:00 05:58:30 -0:19:30 (-1170)
326131 06:40:00 05:59:35 -0:40:25 (-2425)
326132 07:30:48 06:08:51 -1:21:57 (-4917)
326133 07:39:39 06:24:46 -1:14:53 (-4493)
326134 07:43:04 06:37:02 -1:06:02 (-3962)
326135 07:49:29 07:08:00 -0:41:29 (-2489)
326136 07:50:06 07:30:00 -0:20:06 (-1206)
326137 * 07:49:52 08:20:48 0:30:56 (1856)
326138 07:51:13 08:29:39 0:38:26 (2306)
326139 08:02:21 08:33:04 0:30:43 (1843)
326140 08:05:20 08:39:29 0:34:09 (2049)
326141 * 08:04:58 08:39:52 0:34:54 (2094)
326142 08:10:29 08:40:06 0:29:37 (1777)
326143 08:17:06 08:41:13 0:24:07 (1447)
326144 08:18:18 08:52:21 0:34:03 (2043)

Average -0:03:00 (-180)

Table 4: Timestamps on the Bitcoin blockchain for blocks
326130-326144. Blocks with a * appear to have been mined
before the previous blocks. The adjusted timestamp of the
blocks (median of the timestamps of the block and the 10
previous blocks + 50 minutes) and the difference between

these two timestamps are also shown. All times are on
2014-10-20 and in UTC.

58

Please note that these algorithms are not pure functions in the sense
that they will not necessarily always return the exact same result given the
exact same input. They all have an implicit dependency on the blockchain,
which may change over time.

To avoid hardcoding Bitcoin constants, we have the two following blockchain
constants:

NUMBER BLOCKS: Number of blocks to use for calculating the median
timestamp of a block. For Bitcoin, this number is 11.

BLOCK TIME: Average time taken to mine a new block in seconds. For
Bitcoin, this number is 600 (= 10 minutes).

We also have a few helper functions for retrieving blocks:

GetBlock(number): Returns the block with the given block number or
NULL if no such block exists.

GetBlocksRange(from, to): Returns a list of the blocks with block
numbers in [from; to]. If some of the blocks don’t exist, don’t include
them.

GetFirstBlockWithTimestamp(time): Returns the first block whose
timestamp is greater than or equal to time or NULL if no such block
exists.

For our purposes, a block is a simple data structure with the two following
fields:

time: The timestamp of the block, as provided by the miner.

block number: The block number of the block.

Figures 6 and 7 show the algorithms for getting the median and adjusted
timestamps for a block.

To get the median timestamp for a block, we first ensure that the neces-
sary blocks to compute exist. Then we sort the blocks by their timestamps,
and then return the median timestamp. In order to get the adjusted times-
tamp, we simply compute the median timestamp and add the adjustment
constant to it.

The third algorithm, which finds the first block whose adjusted times-
tamp is greater than or equal to a given timestamp, is shown in Figure 8. It
basically starts with the lowest possible block whose adjusted timestamp can
be greater than or equal to the provided timestamp, and then it computes
the adjusted timestamp for that block. If the adjusted timestamp is large
enough, we found the block, otherwise, try the next block.

59

function GetMedianBlockTimestamp(block)
n← block.block number
N ← NUMBER BLOCKS
Blocks←GetBlocksRange(n−N + 1, n) . 0-indexed
Sort Blocks by ascending timestamp
if N is even number then . Median is average of the

. two middle elements
return (Blocks[bN/2c].time + Blocks[dN/2e].time) /2

else
return Blocks[N/2].time

end if
end function

Figure 6: GetMedianBlockTimestamp algorithm to get the median
timestamp of a given block.

function GetAdjustedBlockTimestamp(block)
Median←GetMedianBlockTimestamp(block)
AdjustmentConstant← BLOCK TIME·((NUMBER BLOCKS− 1) /2)
return Median+AdjustmentConstant

end function

Figure 7: GetAdjustedBlockTimestamp algorithm to get the adjusted
timestamp of a given block.

60

To find this start block (lowest possible block), we find the first block
m whose timestamp is greater than or equal to the provided timestamp
minus the adjustment constant. This block m is at least BlocksToAdd =
bNUMBER BLOCKS/2c − 1 blocks behind the first block whose adjusted
timestamp can possibly be greater than or equal to the provided timestamp.
So the start block is m+BlocksToAdd.

function GetFirstBlockWithAdjustedTimestamp(time)
AdjustmentConstant← BLOCK TIME·((NUMBER BLOCKS− 1) /2)
MiddleT ime← time−AdjustmentConstant
MedianBlock ←GetFirstBlockWithTimestamp(MiddleT ime)
if MedianBlock is NULL then

return NULL
end if
BlocksToAdd← bNUMBER BLOCKS/2c − 1
BlockNumber ←MedianBlock.block number +BlocksToAdd
loop

Block ←GetBlock(BlockNumber)
if Block is NULL then

return NULL
end if
Adjusted←GetAdjustedBlockTimestamp(Block)
if Adjusted ≥ time then

return Block
end if
BlockNumber ← BlockNumber + 1

end loop
end function

Figure 8: GetFirstBlockWithAdjustedTimestamp algorithm to get
the first block whose adjusted timestamp is greater than or equal to the

given timestamp.

3.2.3 Adjusted timestamps and orphan blocks

Recall the concept of orphan blocks from Section 2.3.2, where a valid, mined
block is abandoned by the network because another block belonging to a
longer chain is discovered. Under specific circumstances, this switch can alter
the current median block timestamp and thus the adjusted block timestamp
as computed by the above algorithms.

To give an example, let’s say that the network is currently at block n,
and that the timestamps in blocks n− 10 through n are strictly increasing.
This means that the median timestamp for block n is the timestamp of block
n− 5. Now imagine that two blocks A and B are mined simultaneously —

61

block A has a timestamp larger than block n, but block B has a timestamp
that is between those of blocks n − 5 and n − 4. Now, the clients using
the blockchain with block A sees the current median timestamp to be the
timestamp of block n − 4, while those using block B computes the current
median timestamp as the timestamp of block B. Figure 9 shows the blocks
used for computing the median timestamps.

Blocks in median timestamp of block n (before)︷ ︸︸ ︷
Block
n−10

Block
n− 9

Block
n− 8

Block
n− 7

Block
n− 6

Block
n− 5

Block
n− 4

Block
n− 3

Block
n− 2

Block
n− 1

Block
n

Blocks in median timestamp of block A︷ ︸︸ ︷
Block
n− 9

Block
n− 8

Block
n− 7

Block
n− 6

Block
n− 5

Block
n− 4

Block
n− 3

Block
n− 2

Block
n− 1

Block
n

Block
A

Blocks in median timestamp of block B︷ ︸︸ ︷
Block
n− 9

Block
n− 8

Block
n− 7

Block
n− 6

Block
n− 5

Block
B

Block
n− 4

Block
n− 3

Block
n− 2

Block
n− 1

Block
n

Figure 9: When two new blocks A and B are mined simultaneously, if
block B has a timestamp between those of blocks n− 5 and n− 4, clients
using blocks A or B report different median (and adjusted) timestamps.

While it is very uncommon for a newly mined block (B) to have a times-
tamp less than the previous 5 blocks (n − 4 through n), it has happened
55 times before76. Out of these 55 times, only 5 of those has been in newer
time where the Bitcoin network has had a significant hash rate. The Table
5 shows the date, block number and estimated hashrate for the 6 newest
blocks where this has happened. We can see that it happens very rarely —
5 times in the latest 4 years, compared to 50 times before that (in a period
of roughly one year77).

If a block like this is mined at roughly the same time as another block
whose timestamp is larger than any of the 5 previous blocks, and the network
is split between these two blocks, the two splits of the network will report
different median timestamps.

Returning to the different blocks used for computing the median times-
tamps in Figure 9, if a deadline is defined as some time after that of block
n − 5 but before that of block B, observers who uses block A will report
the deadline as reached, while those using block B will not. Furthermore,

76See appendix A.5 for a list of all such blocks.
77The first of these blocks, block number 24,157, was mined 2009-10-01 and the last

one, 86,903, was mined 2010-10-22.

62

Date Block no Network hashrate78

(GHash/s)

(2010-10-22) (86,903) (25)
2011-11-28 155,101 8,000
2011-12-06 156,368 8,000
2012-08-31 196,493 18,000
2014-01-06 278,850 10,000,000
2014-08-19 316,455 167,000,000

Table 5: The 6 latest blocks whose timestamps are
lower than all of those of the previous 5 blocks

they will disagree on which block was the first to have reached the deadline
adjusted timestamp.

The possible consequences of these timestamp disagreements are dis-
cussed later in Section 3.5

3.3 Timestamping on the Bitcoin blockchain

According to the formal description in Section 1.2, the timestamping service
must provide a mechanism for timestamping arbitrary messages, verifying
these timestamps and deciding if a message was timestamped before or after
a deadline.

Bitcoin embeds a solution to the timestamping problem by establishing
consensus on the current time as described in Section 2.3.2, so we can use
it to timestamp arbitrary messages in both a canonical and decentralized
fashion; by computing the hash of a message and using that hash as a
Bitcoin address, we can send a small amount79 of currency to that address,
which will place the hash on the blockchain and serve as proof that the
message was sent at that time.

The Bitcoin Wiki80 has instructions on how to create a Bitcoin address
from an arbitrary bitstring. Normally, this bitstring would be the public
key corresponding to a secret private key, but if we pass the message that
we want to timestamp as this bitstring, we get an address that corresponds
to the message.

Such a scheme, called Commitcoin, was proposed in 2011 by Jeremy
Clark [14] and has already seen multiple implementations such as Origin-

79As mentioned in the paragraph on dust in Section 2.3.1, the smallest possible transac-
tion requires a transaction fee of 0.0001 BTC and transaction outputs of at least 0.0000543
BTC.

80https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses, vis-
ited 2014-10-16

63

https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses

Stamp81 and Crypto Stamp82.
These services, however, only submit to the blockchain once per day83,

essentially making them datestamping services rather than timestamping.
We use a Commitcoin-like scheme for timestamping, but with no such

once-a-day restriction, meaning that we get a precision of around 10 min-
utes84 instead of 24 hours, making it suitable for finer timestamping tasks.

3.3.1 Verifying timestamps

As mentioned in Section 2.3.2, the de facto standard for accepting a trans-
action as confirmed, is to wait until it has 6 confirmations, which makes it
extremely hard (if not practically impossible) to perform a double-spend.

If someone has success performing a double-spend when timestamping a
message m, this would mean that the timestamp would be “forgotten” from
the blockchain. But it’s important to note that only the person performing
the timestamping would be able to sign two transactions from the same
address. So the only effect a double-spend would have in our situation is
that a timestamp shortly would be on the blockchain and then disappear
again afterwards.

If someone who is very frugal wants to timestamp a message, but doesn’t
want to spend any bitcoins if the blockchain already contains a timestamp
for that message85, this frugal timestamper could be fooled by a double-
spend if the message already appeared timestamped on the blockchain, but
would disappear again after they checked and thought that the timestamp
would remain valid.

Two obvious mitigations to this potential problem are:

Wait for more confirmations If the timestamper can afford to wait some
time, they could wait for more confirmations on the timestamp on the
blockchain.

Always timestamp If a timestamper creates a timestamp on the blockchain
for their message, regardless of if such a timestamp already exists, they
can be sure that their own timestamp isn’t double-spent. Given that
the minimum transaction cost is 0.0001543 BTC (USD 0.06 at this
writing86), this is a very small price to pay to avoid this problem.

81www.originstamp.org
82www.cryptostamp.net
83According to OriginStamp: “To keep the costs of running this free service low, we

submit all hashes to the blockchain only once a day.”
8410 minutes is the average rate of blocks being added to the Bitcoin blockchain. Other

blockchains, such as Litecoin or Dogecoin, have average rates of 2.5 minutes and 1 minute,
respectively.

85In theory, if the timestamper waits a bit before timestamping, another timestamper
could already have timestamped the same message.

861 BTC could be exchanged for USD 358.20 on 2014-11-10

64

www.originstamp.org
www.cryptostamp.net

Unless there is a compelling reason not to, I recommend always times-
tamping due to the very low cost to the timestamper.

When verifying timestamps, I suggest always requiring at least 6 confir-
mations to accept a timestamp as valid.

3.4 The participants

In the protocol, the participants can act as one or both of the following roles:

Posters only post messages to the board, and take no part in the actual
consensus protocol.

Timestampers are responsible for timestamping the messages and jointly
reaching the consensus.

The participants are divided into these two roles for two reasons:

• It should be possible for a participant to post their message(s) and then
leave without having to take part in the actual consensus protocol. For
example, a participant may not have constant access to the bulletin
board, or they may be accessing the board from a mobile device for
which it is not desirable to perform heavy computations.

• Given that we use the Bitcoin blockchain as the timestamping mech-
anism, not everybody are willing to spend a small amount87 on the
execution of this protocol.

It is important to stress that the successful consensus depends on the
timestampers only; if no participants volunteer as timestampers, no mes-
sages will be timestamped and thus cannot be proven to have been sent
before the deadline. The more timestampers participate, the more probable
it is for a message close to the deadline to be timestamped.

Another incentive to participate as timestampers, is to ensure that your
messages are indeed timestamped in case all the other timestampers collude
to not timestamp your messages. This is discussed in more detail later in
Section 6.2.5.

Note that the posters don’t necessarily need to query the blockchain for
the current adjusted timestamp if we “definitely” are in the posting phase
according to their own clocks. As an example, imagine a posting phase
stretching from midnight January 1st to midnight January 3rd; if their own
clocks say that we are close to midnight January 2nd, they can safely assume
that the protocol is in the posting phase, because the block timestamps on
the blockchain are somewhat constrained by the entire network’s view of the

87Supernodes must be prepared to spend BTC 0.0001543 for timestamping messages,
which is around USD 0.06, EUR 0.04, or DKK 0.33 for exchange rates on 2014-11-10

65

current time (recall the definition of valid block timestamps from Section
3.2.1).

The following pages describe in detail the actions of the two roles during
the different phases of the protocol:

3.5 The phases of the protocol

The protocol is divided into four phases — before start, posting phase, times-
tamping phase and results phase — where the end of one phases signifies
the start of the next. Figure 10 shows an overview of the phases.

Figure 10: Overview of the four phases in the deadline consensus protocol

66

These four phases are defined by the three timestamps

(deadlinestart, deadlinepost, deadlinetimestamp)

All three timestamps are adjusted block timestamps as defined earlier in
Section 3.2.1.

The following sections describe the four phases of the protocol in detail:

3.5.1 Before start

The first phase isn’t strictly necessary, but is included as an easy way to
define a starting time for the protocol, such that the following posting phase
happens within a defined time interval. This phase could be skipped if no
starting time is needed.

The end of the wait-for-posting phase indicates the start of the posting
phase and is defined by the timestamp deadlinestart.

Consequences of timestamp disagreements If nodes disagree on whether
or not the start deadline has been reached and the posting phase has been
started, some posters may be able to post their messages before other nodes
would start posting. As long as it isn’t necessary to enforce the start deadline
as described later in Section 6.5.2, this makes no difference.

3.5.2 Posting phase

The posting phase is the only phase where the posters participate, namely
by posting their message(s) to the shared bulletin board.

Each timestamper simply receives the messages and stores them locally
after flagging them as being sent before the deadline as shown in the Re-
ceiveMessage(message) algorithm in Figure 22 in the appendix.

The end of the posting phase is defined by the timestamp deadlinepost,
and marks the beginning of the timestamping phase. Clients implementing
the protocol should disallow sending any more messages after the posting
phase has ended.

Because the deadline of the posting phase is somewhat fuzzy — due to
the nondeterministic nature of adjusted timestamps on the blockchain —
it gives posters an incentive to post their messages some time before the
deadline, in order to ensure that their messages will indeed be timestamped.

Consequences of timestamp disagreements If there are timestamp
disagreements on whether or not the posting deadline has been reached, as
explained in Section 3.2.3, the timestampers who think the deadline has
been reached will regard messages as being sent too late, while the other
timestampers will still see them as being sent on time. Thus, a message
could be discarded if both (1) it is sent very close to the deadline and (2) all

67

timestampers are in the part of the network that sees the deadline as being
reached.

This could be mitigated by the poster posting their message earlier or
by having more timestampers.

3.5.3 Timestamping phase

The timestamping phase is arguably the core phase of the consensus proto-
col.

In the beginning of the timestamping phase, each timestamper gathers
all messages received so far (which have been flagged as being sent before
the deadline) and then constructs a key-only IBLT containing the hashes of
all these messages as the keys.

Each timestamper will timestamp their IBLT on the blockchain as de-
scribed in Section 3.3, and post it on the bulletin board. The algorithm to
do this is called PostTimestampCommitment and is shown in Figure 23
in the appendix.

The key-only IBLT will be constructed with the constants as described
in Section 2.5.8 — 32 bytes used for storing keys (ckey), since we will be
using SHA-256 hashes as keys and 16 bytes for the hash sum of the keys
(chkey) and using 5 hash functions (k). The decision of the threshold value t
and in turn the cell count m is delegated to the message interpretation layer
as described later in Section 3.6, because it may provide a better estimate of
the number of expected messages. The threshold value, the cell count and
thus the size of the IBLT are all fixed for a specific instance of the consensus
protocol.

During this phase and the next phase, the timestampers are still receiving
and storing all messages, but they are flagged locally as being sent after
the deadline as shown in the ReceiveMessage(message) algorithm in the
appendix. The timestampers store these messages in case they later learn
that any of these messages were provably sent before the deadline.

The main reason to why we use IBLT’s instead of just a plain list of
message hashes, is that the size of an IBLT is O(t), meaning that it is
linear in the number of expected differences, instead of the list which has
size O(n), linear in the number of message hashes. The timestampers will
agree on most messages being sent before the deadline, but may have a
few differences. We save a lot of space by expecting that the timestampers
mostly agree.

If a timestamper posts an IBLT that is too different from those of the
other timestampers, the other timestampers will not be able to decode the
entries in the IBLT. This means that a timestamper has an incentive to
timestamp all timely messages, as the contents of the IBLT will then be
close to the IBLT’s from the other timestampers.

Since the IBLT has a constant size in each instance, posters cannot cause

68

a denial of service in the timestamping phase by posting a lot of messages
and having the timestampers post large commitment messages as a result,
as it would be possible if we used any data structure whose size was linear
in the amount of messages.

Note that if a timestamper isn’t receiving messages for some time during
the posting phase and doesn’t start receiving them until after the times-
tamping phase has begun — for example, if they were disconnected from
the network during the switch from posting to timestamping phase — they
will mark all new messages as being too late, and will probably not be able
to decode the IBLT’s from the other timestampers.

Consequences of timestamp disagreements If timestampers disagree
on whether or not the timestamping deadline has been reached and the
results phase has started, there is a possibility that the blockchain transac-
tions as created in the beginning of this phase have not yet reached enough
confirmations to be validated. This can easily be mitigated by making the
timestamping phase longer, i.e., by “pushing back” the timestamping dead-
line, delaying the results phase.

3.5.4 Results phase

In the results phase, each timestamper processes the valid commitments
sent from the other timestampers in the timestamping phase in order to
maximize the number of messages proven to be sent before the deadline.

Before we can process a commitment, we have to make sure that it
is actually valid as described in Section 3.3.1. If this is not the case, the
commitment must be discarded. The algorithm to validate the commitments
can be found in the ValidateCommitmentMessages algorithm in Figure
24 in the appendix.

Then we prepare for processing the commitments:

• All n commitments contain an IBLT. We will denote those IBLT’s as
T = [T1, · · · , Tn] and flag all of them as not processed.

• We create a list Lh of the hashes of all the messages we have flagged
as being sent before the deadline as well as an empty list Lnew ← ∅.

Now we can start processing the commitments:

1. While there exists a not processed IBLT B for which
ListEntries(B\Lh) returns one or more hashes not present in either
Lh or Lnew, do the following:

(a) Let (Result,Hashes)←ListEntries(B \ Lh)

(b) Add the hashes to Lnew: Lnew ← Lnew ∪Hashes

69

(c) If Result = Complete, mark B as processed.

2. Move the new hashes from Lnew to Lh: Lh ← Lh ∪ Lnew, Lnew ← ∅

3. If any unprocessed IBLT’s still exist and at least one hash was moved
from Lnew in the previous step, go back to step 1.

4. For each message flagged as being sent after the deadline whose hash
is in Lh, flag it as being sent before the deadline.

Now we have maximized the number of messages that we can prove have
been sent before the deadline.

The purpose of the extra list Lnew to contain newly extracted hashes
may not be immediately clear; the reason is to maximize our chances of
decoding as many hashes from the IBLT’s as possible: If all new hashes
were immediately added to Lh, we run the risk of subtracting too many
hashes from some IBLT’s so we cannot extract any more and thus rendering
that IBLT useless. On the other hand, if we never moved the new hashes
from Lnew to Lh, we run the risk of having subtracted too few hashes from
some other IBLT’s, again causing us to be unable to extract more hashes.

Instead, we use a hybrid solution, where we only move hashes from Lnew
to Lh if we have “exhausted” all IBLT’s, meaning that we cannot extract
any new hashes from any IBLT T \ Lh. We then try to exhaust the IBLT’s
again after adding more hashes to Lh.

This algorithm is called ProcessCommitmentMessages and is writ-
ten as pseudocode in Figure 25 in the appendix.

3.6 The message interpretation layer (MIL)

The message interpretation layer (MIL) lies “on top of” the deadline con-
sensus protocol (see Figure 4 on page 55), letting the underlying protocol
handle the consensus process without any knowledge of the meaning of the
messages passed around. This layer defines how to interpret the messages
and how to combine the messages in order to produce a result, if any, and
decides the IBLT threshold value t.

The MIL can have extra satellite data, further defining the interpretation
of messages. Also, it must implement the five following functions used by
the deadline consensus protocol:

3.6.1 Functions implemented by a MIL

• GetIbltThreshold(): Decide the IBLT threshold value t as de-
scribed in Section 3.5.3.

• Serialize(): Serialize any extra data to binary format.

• Deserialize(): Deserialize any extra data from binary format.

70

• HashData(): Compute hash from any extra data to create unique
identifier.

• MessageValid(message): Validate an incoming message — is it valid
or not?

The first function decides on a threshold value t for the IBLT’s created
by timestampers in the timestamping phase. This value in turn determines
the size of the IBLT’s. The next three functions handle any additional data
needed by the MIL and are used to load and store the protocol details and
to generate a unique identifier for this particular instance of the protocol.
The last function decides if messages are valid or not.

The extra data mentioned could be anything needed to correctly validate
and interpret the messages, or anything that defines characteristics of the
specific instance of the consensus protocol88.

The function MessageValid(message) is called by the consensus pro-
tocol when a new message arrives and must return if that message is valid
and should be stored, or if it is invalid and should be discarded. The consen-
sus protocol passes the raw message without any attempted interpretation,
meaning that it is entirely up to the MIL to define how messages are to be
interpreted.

The following pages describe a specific use case of a message interpreta-
tion layer, namely handling an anonymous election.

88As an example, the extra data of our voting scheme is the question and possible
answers on the ballot, as well as the public keys of registered voters

71

4 A voting protocol built on the deadline consen-
sus protocol

We will now use the decentralized deadline consensus protocol described pre-
viously to build a voting protocol that allows for anonymous voting among
a group of registered voters while being able to detect if one of the regis-
tered voters tries to cast more than one vote. We will do this by creating a
specific message interpretation layer (MIL) for the consensus protocol that
will handle messages as votes.

In order for us to create and execute an election with our proposed
scheme, we need (1) a ballot form that the voters must fill out, which essen-
tially consists of a question and a list of possible answers to that question,
and (2) the public keys of all those who should be able to vote89, so we
can identify and store votes from registered voters, while discarding votes
from everyone else. These data are extra data to the MIL, which must be
serializable and hashable, as described in Section 3.6.

Our voting scheme signs each message, or ballot, with a linkable ring
signature so we can ensure the following:

• The vote comes from a registered voter.

• The identity of the voter cannot be determined with higher probability
than random guessing.

• Double votes are easily detectable.

When a new message arrives, we must validate it in the MessageValid(message)
function by checking that the included linkable ring signature can be verified
in the ring of the public keys of the voters. This ensures that only ballots
with valid signatures are stored, while discarding those without.

When the consensus protocol finishes, we can also discard ballots whose
ring signatures have the same tag, as they are signed with the same key and
can be considered attempts at double-voting. The remaining ballots can
then be summed to compute the result of the election.

The protocol must also define a threshold value for the IBLT’s sent in
the timestamping phase. I propose using a function that increases with the
number of voters, while the increase gets smaller and smaller as the number
of voters grows, so we expect a higher difference as we get more voters
without letting the IBLT’s grow linearly. A good candidate for this function
is the square root of the number of voters. Also, if the number of voters
is sufficiently low, we want a minimum number of expected differences. I
suggest having 10 as the minimum number, so we’ll compute the threshold
value for our voting protocol as follows:

89Note the implicit assumption here that every voter already has a public key known to
whoever initiates the election.

72

t = max(10,
√
|V|)

where |V| is the number of voters in the election.

4.1 Re-voting

It is possible to extend the above protocol to allow re-voting, meaning that
a voter can cast a new vote from an address which have already cast a vote
previously. The previous vote will the be discarded in favor of the new vote.

This is possible by chaining votes from the same tag: When a voter
casts the first vote from a given voter address, they remember the hash of
the vote in case they change their mind and want to cast a new vote later.
In this new vote they include the hash of the previous vote to indicate that
this new vote is a re-vote. It is possible for the voter to cast a virtually
unlimited amount of re-votes, as long as each re-vote references a previously
valid vote.

Of course, it must not be possible to have more than one vote per voter
address counted towards the final tally. Thus, we must ensure that the chain
of votes from the original vote to the final re-vote doesn’t split into multiple
chains. If this happens, we will assume that the voter is trying to cast more
than one vote, and all votes from that address must be discarded.

The following algorithm GetValidVotes in Figure 11 shows how the
voting protocol follows these chains of votes to get to a final list of votes
that should be counted in the final tally. In this algorithm a vote is a simple
data structure with two fields:

children: A set of other votes referring to this vote as the previous vote.
This set is populated during the execution of GetValidVotes.

previous hash: The hash of the previous vote, as provided by the vote signer,
or NULL if the voter cast this as a first vote.

73

function GetValidVotes(V)
Vvalid ← ∅ . Set of all valid votes
Vtags ← votes from V grouped by tag
for all (tag,Vtag) in Vtags do

Vhash ← Map of votes in Vtag by hash
Vorig ← all votes v ∈ Vtag where v.previous hash = NULL

. Vorig is a list of all original votes
if |Vorig| 6= 1 then

continue . Only process tags with exactly one original vote
end if
vorig ← Vorig[0] . Only original vote

for all v in Vtag where v.previous hash 6= NULL do . All revotes
if v.previous hash ∈ Vhash then
Vhash[v.previous hash].children.append(v)

. Add this revote to the children of its previous vote
end if

end for

vvalid ←FollowVoteChain(vorig)
if vvalid 6= NULL then
Vvalid.append(vvalid)

end if

end for
return Vvalid

end function

function FollowVoteChain(v)
if v.children = ∅ then

return v . End of chain
else if |v.children| = 1 then

return FollowVoteChain(v.children[0]) . Follow chain
else

return NULL . More than one child
end if

end function

Figure 11: Algorithm GetValidVotes(V) that produces a list of valid
votes from the list of all votes V (including re-votes) and helper function

FollowVoteChain(v).

74

5 Implementation of the protocols

This section describes the implementation of the consensus protocol de-
scribed in Section 3 and the overlaid voting protocol from Section 4.

Section 5.1 details using Bitmessage as the shared bulletin board in the
consensus protocol. Section 5.2 describes how Invertible Bloom Lookup
Tables are implemented. In Section 5.3 the implementation of the Bitcoin
blockchain is examined. Section 5.4 describes how Linkable Ring Signatures
are implemented. Finally, Section 5.5 contains a list of the relevant source
files in the implementation.

The implementation can be downloaded from GitHub at the following
address: https://github.com/jesperborgstrup/PyBitmessageVote.

A guide to using the client implementation can be found in appendix
A.1.

5.1 Using Bitmessage as the shared bulletin board

The two protocols require a shared bulletin board that, as mentioned in
Section 3.1, must support the following two methods:

• PostMessage(message): This method posts a new message to the
board.

• MessageReceived(message): This is a callback method which will
inform our protocol that a new message has been posted.

For our purposes, we will use the decentralized mailing list functionality
in Bitmessage as the bulletin board, described in Section 2.4.3, and we will
use the “DML to DML” message sending mechanism, which, in addition to
providing a shared bulletin board, also provides anonymity for the message
senders, so a message on the bulletin board cannot be tied to any individual
participant90.

Using the DML functionality In order to use a DML (chan) in Bitmes-
sage, we have to define a chan address with an associated keypair that will
be used for encrypting and decrypting messages to and from the chan. To
do this, we use Bitmessage’s built-in function to deterministically create an
address from a predetermined passphrase, namely the hash returned from
the MIL’s HashData() function, which creates a unique hash from the data
associated with the consensus protocol and the MIL. Using this hash as a
passphrase yields a unique address that we can use for this specific instance
of the consensus protocol. When the address and its corresponding keys have
been computed, we join the chan to be able to post and receive messages.

90If anonymity is undesired for whatever reason, the “Person to DML” approach can be
used instead which will tie messages to the sender’s personal Bitmessage address.

75

https://github.com/jesperborgstrup/PyBitmessageVote

Everyone who wants to post or receive messages to and from this chan,
must compute the address and join the chan.

Given that the Bitmessage reference client, PyBitmessage91, is written
in Python, my implementation is likewise Python code. My implementation
was branched from commit ced463bf92 of the PyBitmessage client. I should
note, however, that I originally started implementation and testing from an
earlier commit, but moved to this newer commit when I had cleaned up the
implementation.

We assume that the message propagation in Bitmessage works fully, al-
though the messages may possibly be delayed.

In order to fully integrate our protocols with the PyBitmessage client, I
had to redesign two parts of the PyBitmessage code:

• Requesting of public keys had to be made more general

• The possibility of interpreting some messages as having special mean-
ing instead of all being treated as plain-text messages

Requesting public keys In the original implementation of PyBitmes-
sage, the requesting of public keys for unknown addresses is tightly coupled
to the sending of messages. In fact, requesting the public key for an un-
known address is one of the steps in sending a message, between the user
pressing ’Send’ and the message actually being sent.

The result of this was that the only way to request public keys was to
send a message to the address for which you wanted the public key. This
didn’t reflect the underlying message protocol, where a public key request
is a separate message type (getpubkey) from a normal message (msg).

This design was not suited for our purpose; imagine that you wanted to
create a linkable ring signature with a ring of a few hundred members. You
would have to compose and send messages to everyone, potentially informing
them that they are about to be part of a ring, which may or may not be
appropriate.

So, in order to separate these two functionalities, I refactored all the code
that deals with requesting public keys to use a new data path as well as a
new database table. This functionality can be found in the helper_keys.py
source file.

Identifying protocol messages So far, the PyBitmessage client had
treated all incoming messages as being the same; a plain text message with
a subject and a body. If we want to fully integrate our protocols, the client
will have to be able to treat some messages as having special meaning.

91https://github.com/Bitmessage/PyBitmessage
92Git commit ced463bf232abe5f8b5109bddc31d3a421ee2f93 of 2014-10-22

76

https://github.com/Bitmessage/PyBitmessage

Luckily, the encrypted data in the msg object contains a message encod-
ing93 field which, despite its name, is used to determine how the data should
be interpreted and is largely unused94, meaning that we can define our own
encoding type95 which flags messages in our consensus protocol. This way,
the client can tell the difference between “our” messages and ordinary mes-
sages.

When a new message arrives, we add an extra check for our protocol
encoding type, and redirect it to our protocol code if the encoding type
matches.

5.2 Invertible Bloom Lookup Tables

For the IBLT’s used in the commitments, no Python implementation existed
at the time, so I created Py-IBLT, which is a IBLT data structure for Python
with the following functionality:

• Customizable values for m (number of cells), k (number of hash func-
tions), ckey (maximum key size), cval (maximum value size), chkey (key
checksum size), and the hash functions used.

• Insertion and deletion of key/value-pairs

• Retrieval of key/value-pairs if possible

• Listing of contents if possible

• Serializing and deserializing to and from binary format

Refer to Section 2.5 for the meaning of the customizable values in the
first point.

Note that we in our protocol only need key storage and retrieval (we
do not need values associated with these keys), and as such Py-IBLT only
supports checksums for keys and not for values96.

See appendix A.4 for more information about Py-IBLT.

5.3 Blockchain usage

In order to be able to query the Bitcoin blockchain for transactions, blocks
and addresses, and push transactions on the Bitcoin blockchain, we use the

93https://bitmessage.org/wiki/Protocol_specification#Message_Encodings, vis-
ited 2014-10-28

94Only 3 out of a maximum possible 264 encodings are defined in the protocol specifi-
cation

95The constant with a value of 12345 is defined as ConsensusProtocol.ENCODING_TYPE

in consensus/consensus_protocol.py
96Storing and retrieving values is supported but without a hash sum for validating the

values.

77

https://bitmessage.org/wiki/Protocol_specification#Message_Encodings

API at blockr.io97. The decision to use the blockr.io API was that it has
identical API’s for the standard Bitcoin network and the Bitcoin testnet98.

To create, sign and post transactions, we used the third party pybit-

cointools99 library. All Bitcoin and blockchain related code can be found
in the source file consensus/bitcoin_helper.py.

Recall from Sections 2.4.2 and 2.4.7 that Bitmessage and Bitcoin keys
are compatible and that Bitmessage uses two keys (one for encrypting and
one for signing). This means that every Bitmessage address has two corre-
sponding Bitcoin addresses, which can be computed from the public keys.
We use this fact to compute the Bitcoin addresses from the signing keys of
the user’s Bitmessage addresses, so timestampers don’t have to create new
Bitcoin addresses and import the keys manually. Figure 12 shows a screen-
shot from the timestamper settings dialog, which shows a user’s Bitmessage
addresses along with the corresponding Bitcoin addresses and that address’
balance.

The functions for detecting that an adjusted block timestamp has been
reached and for determining the first block in which an adjusted block times-
tamp has been reached are in the consensus/bitcoin_helper.py file under
the BitcoinThread.getAdjustedBlockTimestamp(testnet, block_no) and
BitcoinThread.getFirstBlockWithAdjustedTimestamp(testnet, time-

stamp) methods, whose functionalities correspond to the algorithms listed
in Section 3.2.2.

Please note that querying blocks and transactions as well as pushing
new transactions on the blockchain happens through the use of centralized
services, especially blockr.io but also blockchain.info. This was done in
order to keep the implementation simple by not implementing or integrating
a full Bitcoin node inside of the Bitmessage client. In order to be fully
decentralized, the implementation should incorporate a “real” Bitcoin node
as described later in Section 6.5.1, but this wasn’t necessary for a proof-of-
concept.

5.4 Linkable ring signatures

Just as with the IBLT’s, no Python implementation of linkable ring signa-
tures over elliptic curves existed before, so I created an elliptic curve helper
library, Py-EC, and used that as a base for implementing linkable ring sig-
natures.

97I use http://btc.blockr.io for everything except for pushing non-testnet transac-
tions. We had problems using the blockr.io API for that and use the http://blockchain.

info API for that instead.
98Having identical API’s made testing free, since testnet bitcoins can be obtained for

free at designated testnet bitcoin faucets, such as the one at http://testnet.bitcoin.

peercoinfaucet.com/
99https://github.com/vbuterin/pybitcointools, licensed under the MIT license

78

http://btc.blockr.io
http://blockchain.info
http://blockchain.info
http://testnet.bitcoin.peercoinfaucet.com/
http://testnet.bitcoin.peercoinfaucet.com/
https://github.com/vbuterin/pybitcointools

Figure 12: The timestamper settings dialog showing corresponding
Bitmessage and Bitcoin address along with the balance of the Bitcoin

address. The “Import bitcoin address” button allows the user to import
their own bitcoin private key in order to spend bitcoins from other

addresses.

Recall again from Section 2.4.2 that each Bitmessage address is com-
prised of two private keys — an encryption and a signing key. The linkable
ring signatures are signed with the Bitmessage signing key.

Note that we don’t have to use the Bitmessage private and public signing
keys. It is merely a convenience since Bitmessage already has a public key
infrastructure in place. If another set of keys are available for all voters,
those keys could just as well be used for the linkable ring signatures.

For more information about Py-EC, see appendix A.3. This library is
situated in the ec/ folder of the implementation. The actual linkable ring
signature implementation resides in ringsignature/ringsignature.py.

79

5.5 Relevant source files

This section contains a list of the source files that are relevant to my imple-
mentation of the consensus and voting protocols in PyBitmessage. All new
source files are found in the consensus/ folder.

• bitmessageqt/__init__.py: Extended to include voting scheme func-
tionality in the UI

• bitmessageqt/bitmessageui.*: UI definitions modified to include
the “Voting” tab in the client

• bitmessageqt/createelectiondialog.*,
bitmessageqt/electiondetailsdialog.* and
bitmessageqt/timestampersettingsdialog.*: Three dialogs needed
for the voting UI: Create new election, Election details and Timestam-
per settings

• class_singleWorker.py: Worker thread modified to enable the fol-
lowing tasks in a background thread: Request public keys, load and
initialize elections and compute and cast votes.

• consensus/bitcoin/*.py: Contains the pybitcointools100 library

• consensus/ec/*.py: My Py-EC library, see also appendix A.3

• consensus/pyiblt/iblt.py: My Py-IBLT implementation, see also
appendix A.4

• consensus/bitcoin_helper.py: Bitcoin blockchain methods, and timers
for adjusted timestamps.

• consensus/consensus_protocol.py: The core functionality of the
consensus protocol

• consensus/consensus_helper.py: A few helper functions for the
consensus protocol

• consensus/consensus_data.py: An example (trivial) implementa-
tion of a message implementation layer (MIL). Also contains the data
structure that defines the timestamps of a protocol

• consensus/helper_keys.py: Functions for retrieving private keys
and requesting public keys

• consensus/voting_data.py: The voting protocol MIL

• consensus/ringsignature.py: My implementation of linkable ring
signatures over elliptic curves

100https://github.com/vbuterin/pybitcointools, licensed under the MIT license

80

https://github.com/vbuterin/pybitcointools

6 Evaluation

In this section I will analyze and evaluate the design and implementation
proposed in the previous sections, assess their strengths and weaknesses,
describe the threat model, and finally suggest improvements to both the
design and implementation.

6.1 Scalability

This section discusses the scalability of the voting protocol based on using
Bitmessage as the shared, anonymous bulletin board. We shall see that
the optimal number of voters in a single election is a trade-off between low
storage, bandwidth and computing requirements on one hand, and high
anonymity on the other.

6.1.1 Size of an election

As mentioned in Section 2.4.5, each message is restricted to a maximum size
of 256 kB (= 262,144 bytes). If we combine that with the size of a linkable
ring signature from Section 2.7.2, which is 32n + 96 bytes, where n is the
number of members in the ring, we can compute the maximum number of
voters as such:

262,144 ≥ 32n+ 96 + v ⇔ n ≤ 8,189− v

32

... where v is the maximum size of the filled-out ballot. So if we have
that the maximum ballot size is, e.g., 128 bytes101, this leaves us with a
maximum number of 8,185 voters.

While keeping the number of voters as high as possible would be desired
for voter anonymity, having the maximum number of registered voters would
require a lot of storage space on each client102. If we assume that all n voters
cast one vote of size 32n + 96 + 128, each client would have to reserve the
following amount of bytes of space just for this one election:

n(32n+ 96 + 128) = 32n2 + 224n

This evaluates to 2,145,648,640 bytes or approximately 1.998 GB for
n = 8,185, which is quite a lot for Bitmessage, considering that Bitmessage
users have been experiencing problems when their local message store grew
to around 600 MB103.

Figure 13 shows how the total space required to store the votes of an
election grows when the number of voters n grow, assuming that each voter

101In our voting protocol implementation, the theoretical maximum ballot size is just 9
bytes, the maximum size of a variable length integer [9]
102Not just on each voter client, but every client on the Bitmessage network.
103https://bitmessage.org/forum/index.php?topic=4055.0, visited 2014-11-04

81

https://bitmessage.org/forum/index.php?topic=4055.0

casts one vote. We can see that if we keep the number of voters around
1,000, an election will only require around 32 MB of space from each client,
which is much more acceptable than the almost 2 GB for a little over 8,000
voters.

The size of the commitment messages that are sent by the timestampers
(see Section 3.5.3) is around 7 kilobytes, and thus isn’t a significant factor
compared to the size of the votes. Even if every voter acts as a timestamper,
the amount of space required to store all commitment messages is 7, 444n
bytes. This gives us the following equation to decide when the votes take
up more space than the commitment messages:

7, 444n ≤ 32n2 + 224n ⇔ n ≥ 225.625

Meaning that if the election has 226 voters, the space required to store
all votes and all commitment messages is around 2·1.60 MB. If we have more
voters, then the vote size is the determining factor. Also, this calculation
is for the extreme case where every voter volunteers as timestamper, which
most likely isn’t the case in practice.

6.1.2 Proof-of-work needed to broadcast a vote

Another thing to consider when the number of voters and thus the size of
the vote messages increase, is that the proof-of-work required to broadcast
that vote also increases. Figure 14 shows how the target value decreases and
the average time to compute the proof-of-work increases as the number of
voters increase.

We can see that not only does the amount of voters have an influence on
the size and bandwidth requirements of an election, but it also decides how
much computing power a voter is required to use in order to broadcast their
vote. While an average time of around two minutes for approximately 1,000
voters may seem acceptable for most purposes, an election may infer special
circumstances where a voter can’t afford to spend this much computing
power to broadcast a vote.

6.1.3 Subdivision of elections

If an election has more than a thousand voters (or whatever number we
decide is suitable for n), instead of creating one huge election with all the
voters together, we can divide the voters into subelections and join the results
from those subelections into a final result.

This approach is not unlike that of using many smaller polling stations
from regular, offline parliamentary elections. But where the division of vot-
ers is somewhat restricted geographically in those elections104, the subdivi-
sion of voters in an online election scheme such as the one in this thesis can
104Voters that have homes close to eachother vote at the same polling station

82

Voters Space Voters Space
(n) (n)

2 576 B 128 540.0 kB
4 1408 B 256 2.05 MB
8 3840 B 512 8.11 MB

16 11.5 kB 1024 32.22 MB
32 39.0 kB 2048 128.44 MB
64 142.0 kB 4096 512.88 MB

Figure 13: Space required to store all votes from one election relative to
the number of voters (n) in the election, assuming that every voter casts

one vote. First graph shows n ∈ [1; 8000], second graph shows n ∈ [1; 1000],
and the table shows the space required for selected values of n.

83

Voters Target Time Voters Target Time
(n) (log2) (average) (n) (log2) (average)

2 43.838 0:04.733 128 41.685 0:16.852
4 43.762 0:05.350 256 40.847 0:42.094
8 43.619 0:04.011 512 39.935 1:04.725

16 43.370 0:04.912 1024 38.982 1:55.876
32 42.974 0:06.597 2048 38.005 3:14.379
64 42.407 0:08.323 4096 37.017 6:11.777

Figure 14: The proof-of-work increases as the amount of voters increase.
The Target columns show the logarithm log2 t of the desired target value.

We can expect the proof-of-work to require on average 264−log2 t hashes
before a suitable value is found. The graph and the Time columns show the

average time to compute the required proof-of-work over 20 attempts on
my Lenovo Thinkpad E420s. The raw data can be found in appendix A.6.

84

be completely arbitrary; voters can be divided by geography, age, occupa-
tion, or completely by random.

We have to be careful, however, to pick the right number of voters in each
subdivision — more voters means more anonymity for the voters, but higher
storage requirements for the network. On the other hand, fewer voters will
require less storage, but provide poorer anonymity. The “best” number is a
trade-off, and should be chosen with great care for the situation at hand.

6.2 Threat model

This section lists possible attack vectors that could compromise the anonymity
of a voter or the integrity of the election.

When speaking of attacks that could reduce the anonymity, we use the
attacker properties from Diaz et. al [17]:

Internal/External Internal attackers have control of one or more nodes,
while external attackers can only eavesdrop on or control the commu-
nication channels.

Passive/Active Passive attackers can only listen to communications or
read information. Active attackers can also alter information or com-
munications.

Local/Global A local attacker only has control of part of a communication
system, while a global attacker has access to the entire system.

If nothing else is mentioned, we assume that the election data, and thus
the chan address and private keys for the chan, is public knowledge — any
attacker knows of it.

6.2.1 Deanonymizing by private key

If an internal, passive attacker manages to retrieve a user’s private keys, the
attacker can deanonymize any votes sent by that user. The tag, Ỹ , of the
linkable ring signature in a vote can easily be computed by anyone who has
the private key and knows the list of members in the ring (see Section 2.7.1).
Conversely, this scheme does not provide perfect forward secrecy.

Because Bitmessage stores private keys in plain-text on the user’s com-
puter (see Section 2.4.8), anyone who can read the user’s local files is able
to determine which votes are sent by that user. As mentioned, this is a
vulnerability that is inherent to Bitmessage in its current implementation.

This could be mitigated by using a hardware signing device, such as the
Trezor Hardware Bitcoin Wallet105, that stores the user’s private keys and
is used for signing messages without leaking the keys, even on compromised

105http://www.bitcointrezor.com, visited 2014-11-04

85

http://www.bitcointrezor.com

computers. In order for this to be realistic, Bitmessage would have to incor-
porate support for a hardware signing device, and the Trezor (or a similar
device) would need a way of creating linkable ring signatures.

6.2.2 Deanonymization by message origin

If a global, passive attacker can listen to the communication between any
clients, they can discover the IP address that any vote originated from by
examining which client the vote was first sent from.

A user can mitigate this by hiding his vote inside an acknowledgment
message to a third party, as the original paper describes as“passive operating
mode” [36] and as briefly mentioned in Section 2.4.8, but this would require
the third party to allow relaying of acknowledgment data, which they may
have disabled106. The user could then try having multiple third parties
relaying the vote until he comes across one that actually relays the vote.

Another way to circumvent this attack is to use the TOR network to
encrypt and relay the Bitmessage traffic so the attacker cannot read the
contents of the traffic. However, beware of the current limitations on using
TOR with Bitmessage as outlined in Section 2.4.8.

This vulnerability is inherent to using Bitmessage as the shared, anony-
mous bulletin board, and not to the consensus or voting protocols.

If the attacker doesn’t know of the election data — in particular the
private key for the chan — he has no way of determining the contents of a
message sent to that chan, or even knowing that it was sent to the chan.

6.2.3 Linking timestamper activity across consensus instances

Recall from Section 5.3 that the default107 Bitcoin addresses are computed
by using the private signing keys from a timestamper’s Bitmessage addresses
as the Bitcoin private keys.

This information could be used to link an individual’s timestamper ac-
tivity to that Bitcoin address if they re-use an address across several in-
stances of the consensus protocol. While this isn’t inherently a problem if
a timestamper doesn’t mind that information being public, they may not
understand this possibility.

One solution to this problem, aside from explicitly importing Bitcoin
private keys for each instance of the consensus protocol, is to derive a new
private key that is specific to the current instance. This could be done by
computing the private key as the hash of the Bitmessage private signing key
concatenated with the election data. This way, the default addresses are
different with each new instance.

106A user may choose to disable relaying of acknowledgment data due to the vulnerability
“Using acknowledgments to deanonymize users” in Section 2.4.8.

107It is possible to import Bitcoin private keys and not use the computed Bitcoin ad-
dresses.

86

A drawback to this feature is that the private keys of the derived ad-
dresses are easily lost as an instance of the protocol completes. If a times-
tamper has deposited more bitcoins than needed into that address and the
keys are lost, the bitcoins are out of the timestamper’s reach forever.

6.2.4 Subverting the election with a Sybil attack

A Sybil attack [18] in our scheme can be performed by the election organizer
who defines the list of voter addresses. If the organizer puts a sufficient
amount of“fake identities”that he controls in this address list, he can control
the outcome of the election simply by using all the fake identities to cast
votes as he desires.

The voting protocol described in this thesis requires some trust in the
organizer that decides which addresses are allowed to vote. This can be
mitigated if the voters jointly decide on the voter list prior to an organizer
creating the election data.

6.2.5 Misbehaving timestampers

Malicious timestampers could choose to only timestamp certain messages —
e.g., in an election a timestamper could “forget” to timestamp some votes
for a party which the timestamper doesn’t want to win. That party, and
all other parties as well, should run their own timestamping node to ensure
that the votes for their party would indeed be timestamped —put simply,
the more independent timestampers we have, the more “neutral” we can
expect the list of timestamped messages to be.

Another thing is that a “rogue” timestamper can decide to commit to
messages received after the beginning of the timestamping phase, i.e., times-
tamping too-late messages. The probability of this succeeding gets smaller
and smaller as we approach the timestamping deadline, due to the fact that
the timestamp needs at least 6 confirmations on the blockchain before the
timestamping phase ends in order for the timestamp to be considered valid
(see Section 3.3.1). Also, the other timestampers may not be able to fully de-
code the IBLT if the timestamper does this for many messages that haven’t
been timestamped by anyone else.

The other side of this is that if you really want to post a message after
the timestamping phase has started, you can still do it if you volunteer as
a timestamper and pay a small amount to commit to your own message.
This means that in actuality, the “real” posting deadline is defined by the
timestamping deadline and the number of confirmations required in order
for a timestamp to be valid.

87

6.2.6 Coercion of voters

When voting no longer happens in a controlled environment, such as a phys-
ical, private polling station, it provides a possibility of voters being coerced.
As an example, imagine a situation where a small community holds an elec-
tion and everybody over the age of 12 gets one vote. A dominant patriarch
could force his child to vote as he desires by being standing behind the
child as he/she votes (or even by casting the vote himself from the child’s
computer).

Outside of a controlled environment, it is impossible to introduce com-
plete coercion resistance, but by introducing the possibility of re-voting as
described in Section 4.1, the coerced can invalidate the forced vote and in-
stead cast his/her originally desired vote when the coercer has left.

Re-voting introduces another challenge, namely that the voter needs to
remember the hash of the previous vote. The implementation already does
this for the voter, but if the they need to cast their re-vote from another
device, they would have to transfer the vote hash themselves.

This is by no means a complete solution for coercion resistance for our
voting scheme, but it is an improvement over a similar voting scheme without
re-voting.

6.3 Voting properties satisfied

Recall from section 2.6 the four described properties that are desirable for
a voting scheme:

• Integrity

• Verifiability

• Privacy/anonymity

• Coercion resistance

I will here try to qualify how much each of these properties have been
satisfied:

Integrity It is, by means of the linkable ring signature, infeasible to alter
existing votes or create new ones in order to influence the final result of an
election. However, it is possible for colluding timestampers to exclude cer-
tain votes from the set of valid votes as described in Section 6.2.5. However,
this risk is minimized as more and more neutral timestampers take part in
the timestamping phase.

88

Verifiability Both aspects of verifiability — universal and individual —
are satisfied. Given that all votes are public, anyone who has the full list of
votes can compute the result themselves. Given a the list of voters and a
private key, we can compute the tag for that private key and check that a
vote with that tag exists in the list of votes.

Privacy/anonymity Voters are anonymous in the set of all voters in
the election, which for practical purposes will be smaller than a few thou-
sand voters. Whether or not this number is large enough, depends on the
anonymity requirements of a given election.

As mentioned previously, if a voter fails to secure their computer enough
to allow for malware or viruses to obtain their private key, their anonymity
is compromised. Since we cannot reasonably expect every voter to be able to
protect their private computer against such attacks, the only viable solution
for this may be to use hardware signing devices as suggested in Section 6.2.1.

Coercion resistance As explained in Section 2.6.2, an election loses a
lot of its coercion resistance if it allows for casting votes outside of the
controlled, private environments of voting booths. We have regained a little
of the lost by introducing the possibility to re-vote, but as is symptomatic
to online voting schemes, coercion of voters is a very real problem and must
be treated as such.

6.4 Extensibility

Having divided the responsibilities between the consensus and the voting
protocols, we can easily extend the decentralized functionality into other
domains than voting. This section lists a few examples where new function-
ality can be built on top of the consensus protocol, simply by implementing
a new Message Interpretation Layer (MIL).

When using our consensus protocol, everybody involved can see all mes-
sages posted and verify that no foul play was involved in selecting the valid
messages.

Note that although the consensus protocol uses an anonymous bulletin
board, the messages posted to the bulletin board can be signed with the
identity of the poster if required.

Auctions Bidding on items is another example where we need to collect all
bids before a deadline in order to determine the winner of the auction.
The winner would then be the highest bid among all the posted bids.

This type of auction where the deadline cannot be precisely predicted
ahead of time prevents the phenomenon of online auction sniping [32],

89

where a bidder places a bid at the final moments of an auction, pre-
venting other bidders to place a higher bid, and thus winning the
auction.

Contests Imagine a contest where the contestants have to submit their
contributions before a specific deadline. The consensus protocol would
ensure that only contributions posted before the deadline would be
considered.

Applications to a college, for a job position or the like can be posted using
our consensus protocol, if it is desirable that everybody can see the
applications posted.

6.5 Possible improvements

The following section is a list of possible improvements to the design and/or
implementation.

6.5.1 Remove reliance on centralized blockchain services

As mentioned in Section 5.3, the implementation uses the API at http:

//btc.blockr.io. Relying on a single centralized service like this is con-
tradictory to the main goal of this thesis, namely to propose a high-level
design and working implementation a trustless, private and decentralized
peer-to-peer voting scheme.

Although this is acceptable for a proof-of-concept implementation, be-
cause the core of the protocol indeed is decentralized, I suggest improving on
the implementation by removing the reliance of a single centralized service.

An easy way to fix this would be to use more centralized services like
blockchain.info, blockexplorer.com, biteasy.com, etc. However, this only makes
the design rely on more centralized services, although we depend less on each
service.

A better solution would be for the client to implement functionality to
run or connect with a Bitcoin node on the local machine. This way we could
read the necessary information from and push transactions to the Bitcoin
blockchain in a decentralized way.

We don’t even need to run a “full” Bitcoin node that has to store the
entire blockchain locally. We have multiple options on how to run a decen-
tralized Bitcoin client that uses as few resources as possible:

Simplified Payment Verification (SPV) The original Bitcoin paper ac-
tually proposes a mechanism for a “light-weight” network node [25]. In
this proposal, the node doesn’t validate blocks or store unneeded trans-
actions, but relies on the network being controlled by honest nodes.

90

http://btc.blockr.io
http://btc.blockr.io

Connection Bloom Filtering Bitcoin Improvement Proposal (BIP) 37108

is an accepted109 proposal for the Bitcoin protocol that allows nodes
to define which transactions to receive from any node, in order to not
receive irrelevant transactions.

Any or both of these functionalities can be used to reduce the band-
width, storage and computing costs of running a Bitcoin node for the pur-
poses described in Sections 3.2 and 3.3, and thus make the implementation
completely decentralized.

6.5.2 Enforce the starting deadline

If we wanted to enforce the starting deadline of the consensus protocol — i.e.,
to prevent posters from getting messages accepted which were sent before
the posting phase had started — we could require posters to include in their
messages the hash of the first block whose adjusted timestamp had exceeded
the start deadline. Since this hash cannot be known in advance, its inclusion
in a message would be proof that the message was created after the start
deadline.

However, the poster would still have to make sure that they didn’t include
the hash of a block that ends up being an orphan block. To mitigate this, we
could require that the messages include the hash of one of several possible
blocks before the actual block that passed the deadline.

For example, if block n is the first block whose adjusted timestamp is
greater than the start deadline, but ends up being an orphan block, we
could simply require that the messages include the hash of any of the blocks
n − 6, n − 5, · · · , n − 1, n. This would still make it possible to prepare and
post messages slightly before the posting phase has canonically started, but
we have limited the time in which a message can be posted significantly, and
a poster that posts a message before the posting phase started cannot be
certain that their included hash will eventually be one of the valid ones.

6.5.3 Prove the “freshness” of the election

The election data could, in addition to the ballot form and the list of voters,
also contain the hash of a newly mined blockchain block. This would ensure
the “freshness” of the election, and prevent an attacker from preparing any
attacks that require some of the election data, such as the election hash or
the derived chan address.

108https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki, visited
2014-11-05
109An accepted BIP means that the community has accepted the changes proposed, but

the reference implementation has not yet been completed.

91

https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki

6.5.4 Eliminate running totals in an election

The way our voting protocol is realized has the inherent side-effect of broad-
casting the current tally in real time. Having this information public has
the power to actually influence the behaviour of voters who haven’t voted
yet, just as exit polls are blamed of having in traditional elections:

A 1986 study showed that “[e]xit polls appear to cause small declines in
total voting in areas where the polls close late for those elections where the
exit polls predict a clear winner when previously the race had been consid-
ered close.” [33], and a 2013 study had similar conclusions while also showing
that “exit poll information [significantly] increases bandwagon voting; that
is, voters who choose to turn out are more likely to vote for the expected
winner” [24].

It seems clear that having running totals broadcast in real time could
have serious implications on the election result, and eliminating this possi-
bility could be a great improvement to our voting scheme.

An approach for hiding the contents of the votes until the election is over,
could be that of time-lock puzzles as introduced by Rivest et al. [29]. Time-
lock puzzles are a way of “encrypt[ing] a message so it cannot be decrypted
by anyone, until a pre-determined amount of time has passed”.

However time-lock puzzles bear a resemblance to proof-of-work puzzles
in the sense that they are both CPU-intensive for the solver. Furthermore,
they are intentionally not parallelizable, so decrypting all votes may prove
to be an insurmountable amount of work for a single node. If this direction
were to be pursued, the nodes participating in the election would probably
have to cooperate in order to decrypt all the votes and compute the final
tally for the election.

92

7 References

[1] National Security Agency. The Case for Elliptic Curve Cryptogra-
phy. Jan. 2009. url: http://www.nsa.gov/business/programs/
elliptic_curve.shtml (visited on 07/23/2014).

[2] Adrian Antipa et al. “Validation of Elliptic Curve Public Keys”. In:
Proceedings of the 6th International Workshop on Theory and Prac-
tice in Public Key Cryptography: Public Key Cryptography. PKC ’03.
London, UK, UK: Springer-Verlag, 2003, pp. 211–223. isbn: 3-540-
00324-X.

[3] Man Ho Au et al. “Short Linkable Ring Signatures Revisited”. In:
Proceedings of the Third European Conference on Public Key Infras-
tructure: Theory and Practice. EuroPKI 2006. Turin, Italy: Springer-
Verlag, 2006, pp. 101–115. isbn: 3-540-35151-5, 978-3-540-35151-1.
doi: 10.1007/11774716_9.

[4] Adam Back. Hashcash - A Denial of Service Counter-Measure. Tech.
rep. 2002. url: http://www.hashcash.org/papers/hashcash.pdf
(visited on 12/18/2013).

[5] BitmessageWiki. Address. Jan. 2014. url: https://bitmessage.org/
wiki/Address (visited on 08/21/2014).

[6] BitmessageWiki. Decentralized Mailing List. Jan. 2014. url: https:
//bitmessage.org/wiki/Decentralized_Mailing_List (visited on
02/20/2014).

[7] BitmessageWiki. Encryption. Jan. 2014. url: https://bitmessage.
org/wiki/Encryption (visited on 08/22/2014).

[8] BitmessageWiki. Mailing List. Jan. 2014. url: https://bitmessage.
org/wiki/Mailing_List (visited on 02/20/2014).

[9] BitmessageWiki. Protocol specification. Jan. 2014. url: https : / /

bitmessage.org/wiki/Protocol_specification (visited on 08/22/2014).

[10] BitmessageWiki. Protocol specification. Jan. 2014. url: https : / /

bitmessage.org/wiki/Protocol_specification_v3 (visited on
10/30/2014).

[11] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Al-
lowable Errors”. In: Commun. ACM 13.7 (July 1970), pp. 422–426.
issn: 0001-0782.

[12] Joppe W. Bos et al. “Elliptic Curve Cryptography in Practice.” In:
IACR Cryptology ePrint Archive 2013 (2013), p. 734.

93

http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://www.nsa.gov/business/programs/elliptic_curve.shtml
http://dx.doi.org/10.1007/11774716_9
http://www.hashcash.org/papers/hashcash.pdf
https://bitmessage.org/wiki/Address
https://bitmessage.org/wiki/Address
https://bitmessage.org/wiki/Decentralized_Mailing_List
https://bitmessage.org/wiki/Decentralized_Mailing_List
https://bitmessage.org/wiki/Encryption
https://bitmessage.org/wiki/Encryption
https://bitmessage.org/wiki/Mailing_List
https://bitmessage.org/wiki/Mailing_List
https://bitmessage.org/wiki/Protocol_specification
https://bitmessage.org/wiki/Protocol_specification
https://bitmessage.org/wiki/Protocol_specification_v3
https://bitmessage.org/wiki/Protocol_specification_v3

[13] David Chaum and Eugène Van Heyst. “Group Signatures”. In: Pro-
ceedings of the 10th Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT’91. Brighton,
UK: Springer-Verlag, 1991, pp. 257–265. isbn: 3-540-54620-0. (Visited
on 03/11/2014).

[14] Jeremy Clark and Aleksander Essex. “CommitCoin: Carbon Dating
Commitments with Bitcoin - (Short Paper)”. In: Financial Cryptog-
raphy and Data Security - 16th International Conference, FC 2012,
Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Pa-
pers. 2012, pp. 390–398. doi: 10.1007/978-3-642-32946-3_28.

[15] Explicit-Formulas Database. Genus-1 curves over large-characteristic
fields. 2008. url: http://hyperelliptic.org/EFD/g1p/index.html
(visited on 07/23/2014).

[16] Roberto Di Cosmo. “On privacy and anonymity in electronic and
non electronic voting: the ballot-as-signature attack.” Apr. 2007. url:
https://hal.archives-ouvertes.fr/hal-00142440.

[17] Claudia Dı́az et al. “Towards Measuring Anonymity”. In: Privacy En-
hancing Technologies, Second International Workshop, PET 2002, San
Francisco, CA, USA, April 14-15, 2002, Revised Papers. 2002, pp. 54–
68. doi: 10.1007/3-540-36467-6_5.

[18] John R. Douceur. “The Sybil Attack”. English. In: Peer-to-Peer Sys-
tems. Ed. by Peter Druschel, Frans Kaashoek, and Antony Rowstron.
Vol. 2429. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2002, pp. 251–260. isbn: 978-3-540-44179-3. doi: 10.1007/3-
540-45748-8_24.

[19] Niels Ferguson, Bruce Schneier, and Kohno Tadayoshi. Cryptography
Engineering. John Wiley and Sons, Mar. 2010. isbn: 978-0-470-47424-
2.

[20] Michael T. Goodrich and Michael Mitzenmacher. “Invertible Bloom
Lookup Tables”. In: CoRR abs/1101.2245 (2011).

[21] Nermin Hajdarbegovic. One Does Not Simply Find Satoshi Nakamoto.
Mar. 2014. url: http://www.coindesk.com/one-simply-find-
satoshi-nakamoto/ (visited on 10/16/2014).

[22] Thomas Icart. “How to Hash into Elliptic Curves”. In: Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings. 2009, pp. 303–316. doi: 10.1007/978-3-642-03356-8_18.

[23] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable Spon-
taneous Anonymous Group Signature for Ad Hoc Groups”. In: In
ACISP’04, volume 3108 of LNCS. Springer-Verlag, 2004, pp. 325–335.

94

http://dx.doi.org/10.1007/978-3-642-32946-3_28
http://hyperelliptic.org/EFD/g1p/index.html
https://hal.archives-ouvertes.fr/hal-00142440
http://dx.doi.org/10.1007/3-540-36467-6_5
http://dx.doi.org/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1007/3-540-45748-8_24
http://www.coindesk.com/one-simply-find-satoshi-nakamoto/
http://www.coindesk.com/one-simply-find-satoshi-nakamoto/
http://dx.doi.org/10.1007/978-3-642-03356-8_18

[24] Rebecca B. Morton et al. Exit Polls, Turnout, and Bandwagon Voting:
Evidence from a Natural Experiment. CREMA Working Paper Series
2013-01. Center for Research in Economics, Management and the Arts
(CREMA), Feb. 2013. url: http : / / ideas . repec . org / p / cra /

wpaper/2013-01.html.

[25] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
2008. url: http://bitcoin.org/bitcoin.pdf (visited on 12/17/2013).

[26] Max Raskin. Bitmessage’s NSA-Proof E-mail. June 2013. url: http:
//www.businessweek.com/articles/2013-06-27/bitmessages-

nsa-proof-e-mail (visited on 08/26/2014).

[27] Certicom Research. “SEC 1: Elliptic Curve Cryptography”. In: Stan-
dards for Efficient Cryptography. 2009.

[28] Certicom Research.“SEC 2: Recommended Elliptic Curve Domain Pa-
rameters”. In: Standards for Efficient Cryptography. 2009. url: http:
//www.secg.org/download/aid-386/sec2-final.pdf.

[29] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and
Timed-release Crypto. Tech. rep. Cambridge, MA, USA, 1996.

[30] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Se-
cret”. In: Proceedings of the 7th International Conference on the The-
ory and Application of Cryptology and Information Security: Advances
in Cryptology. ASIACRYPT ’01. London, UK, UK: Springer-Verlag,
2001, pp. 552–565. isbn: 3-540-42987-5.

[31] SafeCurves. Choosing safe curves for elliptic-curve cryptography. url:
http://safecurves.cr.yp.to/ (visited on 07/23/2014).

[32] Ina Steiner. Online Auction Sniping: The Thrill of the Hunt. Feb.
2002. url: http://www.ecommercebytes.com/cab/abu/y202/m08/
abu0077/s02 (visited on 11/13/2014).

[33] Seymour Sudman.“Do Exit Polls Influence Voting Behavior?” In: Pub-
lic Opinion Quarterly 50.3 (1986), pp. 331–339. doi: 10.1086/268987.
eprint: http://poq.oxfordjournals.org/content/50/3/331.

full.pdf+html.

[34] Igor Tolkov. “Counting points on elliptic curves: Hasse’s theorem and
recent developments”. In: (June 2009). url: http : / / www . math .

washington.edu/~morrow/336_09/papers/Igor.pdf (visited on
11/10/2014).

[35] Gonzalo Tornaŕıa.“Square Roots Modulo p”. English. In: LATIN 2002:
Theoretical Informatics. Ed. by Sergio Rajsbaum. Vol. 2286. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 430–
434. isbn: 978-3-540-43400-9. doi: 10.1007/3-540-45995-2_38.

95

http://ideas.repec.org/p/cra/wpaper/2013-01.html
http://ideas.repec.org/p/cra/wpaper/2013-01.html
http://bitcoin.org/bitcoin.pdf
http://www.businessweek.com/articles/2013-06-27/bitmessages-nsa-proof-e-mail
http://www.businessweek.com/articles/2013-06-27/bitmessages-nsa-proof-e-mail
http://www.businessweek.com/articles/2013-06-27/bitmessages-nsa-proof-e-mail
http://www.secg.org/download/aid-386/sec2-final.pdf
http://www.secg.org/download/aid-386/sec2-final.pdf
http://safecurves.cr.yp.to/
http://www.ecommercebytes.com/cab/abu/y202/m08/abu0077/s02
http://www.ecommercebytes.com/cab/abu/y202/m08/abu0077/s02
http://dx.doi.org/10.1086/268987
http://poq.oxfordjournals.org/content/50/3/331.full.pdf+html
http://poq.oxfordjournals.org/content/50/3/331.full.pdf+html
http://www.math.washington.edu/~morrow/336_09/papers/Igor.pdf
http://www.math.washington.edu/~morrow/336_09/papers/Igor.pdf
http://dx.doi.org/10.1007/3-540-45995-2_38

[36] Jonathan Warren. Bitmessage: A Peer-to-peer Message Authentication
and Delivery System. Nov. 2012. url: https://bitmessage.org/
bitmessage.pdf (visited on 12/18/2013).

[37] Jonathan Warren. Proposed Bitmessage Protocol Technical Paper. Jan.
2013. url: https://bitmessage.org/Bitmessage%20Technical%
20Paper.pdf (visited on 08/22/2014).

96

https://bitmessage.org/bitmessage.pdf
https://bitmessage.org/bitmessage.pdf
https://bitmessage.org/Bitmessage%20Technical%20Paper.pdf
https://bitmessage.org/Bitmessage%20Technical%20Paper.pdf

A Appendix

A.1 Using the voting client

The client is based on the Bitmessage desktop client and extended with the
decentralized consensus deadline protocol and the voting protocol as the
Message Interpretation Layer on top of the consensus protocol.

In order to run the client, you need PyQt110 4 installed. The Bitmessage
Wiki has instructions on how to install PyQt for Linux, OS X and Windows
here: https://bitmessage.org/wiki/Compiling_instructions

A.1.1 Opening the client for the first time

The appearance of the client is similar to that of the original Bitmessage
client, but with an extra tab called “Voting” in the top of the window.
Opening this tab takes you to the empty voting dashboard as seen in Figure
15.

Figure 15: The empty voting dashboard (no elections loaded)

In order to participate in an election, you need to either create a new
election or join an existing election. The following sections describe how to
do just that.

110PyQt is a Python binding of the cross-platform GUI toolkit Qt.

97

https://bitmessage.org/wiki/Compiling_instructions

A.1.2 Creating a new election

In order for an election to ever take place, someone has to create it in the
first place. You do so by clicking the “Create new election” button in the top
right corner of the voting dashboard. This opens a new dialog that looks
like in Figure 16.

(a) Empty dialog (b) Filled out dialog

Figure 16: The “Create election” dialog used to create a new election. The
gray addresses in the “Registered voters” list in Figure (b) are addresses for

which we don’t yet have the private keys.

You have to fill out the following fields:

Election question The question that this election is about. Cannot be
empty.

Possible answers Answers to the question that the voters can choose among.
There must be at least two answers.

Registered voters The Bitmessage addresses of all voters who are to vote
in the election. One address equals one vote. You must enter at least
three addresses. If the client doesn’t know some of the public keys to
the addresses, those addresses are displayed in gray text.

98

Blockchain for commitments Choose between using the normal Bitcoin
blockchain or the Bitcoin testnet blockchain for timestamping. Coins
on the testnet are free, but the timestamps are very unstable. Un-
less you have a specific reason for doing so, use the normal Bitcoin
blockchain.

Election start The time for starting the election

Election deadline The time to stop the casting of votes and begin the
timestamping phase. Must be after the election start.

Timestamping phase deadline The time to stop the timestamping phase
and begin the results phase. Must be after the election deadline.

After you have entered the election details and pressed the “OK” button,
you will return to the voting dashboard.

Missing public keys If some of the addresses in the dialog were gray, the
client were missing the public keys for those addresses. Requests for those
public keys are automatically sent out, and you will have to wait for those
to arrive before anything can happen with the election. While the client
is waiting for the required public keys, the voting dashboard looks like in
Figure 17.

Figure 17: Voting dashboard when the client is waiting for public keys

99

While waiting for public keys, you can open the “Election details” dialog
to see how many public keys the client has and how many it needs. This
dialog is explained in detail later.

A.1.3 Joining an existing election

When you have created an election and want people to participate in it, they
have two options for loading the election data into their clients. By clicking
on the “Join election” button in the top right corner of the dashboard, you
are presented with two options:

Join by election hash By entering the the unique 64-byte hexadecimal
hash of the election, people are able to join the communications chan-
nel (chan) and receive messages through that channel. You can then
broadcast the election data to the channel by clicking the button “Op-
tions” in the left of the dashboard and selecting “Broadcast election
data”. After a short while, the election will be automatically loaded
on their clients.

Import election from file You can export the election data to a file by
clicking the “Options” below the “Join election” button and selecting
“Export election to file”. This allows you to create a file with the data
which you can send to the participants in whatever way you choose.
When the participants import the file into their clients, the election is
automatically loaded.

Please note that the creator’s client must have all the required public
keys before they can broadcast or export the election data.

A.1.4 The voting dashboard

Once you have created or joined an election, the voting dashboard changes
to something like what you can see in Figure 18. The voting dashboard
has many controls and buttons, so we’ll go through them now from top to
bottom, left to right:

Election question Shows the question of the currently selected election.

Election status/phase Shows the current phase of the selected election.

Countdown timer Shows an estimate of time left until the current phase
ends.

Debug options button Allows you to manually trigger the different phases,
and to clear all messages received in the election. This button should
never be used in a real election, as they may alter the state and/or
outcome of the election for this client.

100

Figure 18: The voting dashboard with an election loaded that is ready for
voting

Timestamper options button This button opens the timestamper set-
tings dialog which allows you to activate or deactivate timestamper
behavior for this client. The contents of this dialog is explained later
in Section A.1.6. The text on the button reflects whether or not times-
tamping behavior is enabled or disabled. This button is only enabled
before the timestamping phase. After that, you cannot make changes
to the timestamper settings.

Election details button This opens the election details dialog which shows
many variables about the current election. The dialog is explained
later in Section A.1.5.

Options button This button allows you to broadcast or export the election
data as mentioned earlier, and also allows you to remove the election
from your client. Note that removing the election from your local
client doesn’t affect anyone else.

List of individual votes This is a list of all votes received (as well as your
own votes). It shows the time the vote was received on the local client,
the actual vote, the tag of the ring signature (the voter’s anonymous
identity), the hash of the vote, and the hash of the previous vote if the
vote is a re-vote. The list is updated in real-time.

101

Current tally This table shows the current result of the election computed
from the list of individual votes. Just as with the list of individual
votes, this table is also updated in real-time.

Vote panel This panel is shown whenever the election is open for casting
votes and you control one or more of the voter addresses.

Vote address This text shows the address you are using for voting. If
you control more than one of the registered voter addresses, the text
changes to a dropdown box where you can select which address to use.
If the address has already cast a vote earlier, the text“(already voted)”
will be added to the address. You can still perform a re-vote then.

Vote This dropdown box is used to select what you want your vote to be.

Cast vote button Clicking this button will cast the selected vote using
the selected vote address.

A.1.5 Election details

Clicking on the “Election details” button in the dashboard brings up the
election details dialog which looks like Figure 19.

This dialog lists a lot of variables and details about the election. The
question, start time, deadline, timestamping phase deadline, # addresses,
blockchain and registered addresses are the values provided when the election
was created. The rest of the information is as follows:

Status The current phase of the election. This text is the same as on the
dashboard.

Election hash The unique hash that identifies this election. The text is
selectable so you easily can copy the hash and give to others who want
to join the election.

Chan address This is the address of the Bitmessage chan used as the
shared bulletin board. The chan adress is computed from the above
hash.

Public keys shows the number of known and required public keys. If
the first number is smaller than the second, we don’t yet have all the
required public keys and must wait for them to arrive.

Valid votes shows the number of votes that the client has declared as
being sent before the deadline, either by receiving them before the
deadline or by timestampers having committed to them.

102

Figure 19: The election details dialog

103

Votes too late shows the number of votes that the client has declared
as being sent after the deadline. If a commitment for some of these
votes is processed, those votes are moved to the valid votes.

Commitments shows the number of commitments that are validated
and processed and the total number received. Commitments aren’t
validated or processed before the results phase, so the first number
will always be 0 until the results phase starts. Ideally all commitments
will be both validated and processed, so the first number is the same
as the last.

Invalid commitments shows the number of commitments that are de-
clared invalid because they couldn’t be verified on the blockchain.

Results shows the number of results messages received.

Missing valid votes shows the number of votes which we know are
valid based on commitments from timestampers, but we haven’t (yet)
received.

Votes validated from commitments is the number of votes which
the client originally declared as being sent too late, but where com-
mitments have proved that they were indeed sent in time.

A.1.6 Timestamper settings

The timestamper settings dialog, which was briefly shown in Section 5.3,
allows you to choose whether or not to volunteer as a timestamper, and, if
so, which Bitcoin address to use when committing to the blockchain. The
dialog is shown again in Figure 20.

In addition to showing the addresses, the dialog also shows the current
balance of each address and allows you to import a Bitcoin private key by
pressing the “Import Bitcoin address”. You can choose to provide a private
key either as a 64-character hexadecimal number or as Bitcoin Wallet import
format111 (WIF).

As the dialog points out with the bold text, an election cannot be exe-
cuted if nobody volunteers as timestampers.

A.1.7 Election results

When an election is over (the commitment deadline has been reached), the
voting dashboard changes slightly and shows two more lists, namely “All
results” and “Result details”. The first list shows an overview of all election

111This format is the one used, e.g., when dumping a Bitcoin private key with the
dumpprivkey tool. The technical description for WIF can be found here: https:

//en.bitcoin.it/wiki/Wallet_import_format, visited 2014-10-30

104

https://en.bitcoin.it/wiki/Wallet_import_format
https://en.bitcoin.it/wiki/Wallet_import_format

Figure 20: The timestamper settings dialog allowing you to configure your
client as a timestamper.

105

results posted to the bulletin board (as well as our own), and clicking one
of them shows the result in the second list.

NB: The results can be faked by anyone and should not be trusted. How-
ever, they can be used to get an overview of other clients having arrived at
different results, if any.

Figure 21: The voting dashboard as it looks when an election is over.
Notice the new lists “All results” and “Result details”

106

A.2 Pseudocode for consensus protocol

The next pages show pseudocode for the following functions:

• ReceiveMessage(message): Runs when an ordinary message is re-
ceived. Decides whether or not to store the message and how to store
it.

• PostTimestampCommitment(): Runs when the posting phase is
over, in order to construct a timestamped commitment to post to the
other peers.

• ValidateCommitmentMessages(): Runs when the timestamping
phase is over, and validates all received IBLT’s.

• ProcessCommitmentMessages(): Runs immediately after Vali-
dateCommitmentMessages, and processes all valid IBLT’s by ex-
tracting as many hashes as possible from them and then using these
hashes to accept messages as being sent before the deadline.

In these functions, we have the following lists available (which are all empty
at the beginning):

• M : Messages which are accepted as being before the deadline, either
by us locally, or by a valid commitment by another peer.

• MLate: Messages which are marked as received after the deadline.

• IBLTSUnvalidated: IBLT’s from other peers which have only been re-
ceived, and not yet validated.

• IBLTSIncomplete: IBLT’s from other peers which have been validated,
and are not processed completely.

• MHAccepted: List of message hashes which have valid commitments
(through IBLT’s)

And this function which is not directly part of the consensus protocol, but
instead a part of the Message Interpretation Layer (MIL) on top of the
consensus protocol:

• MessageValid(message): Decide if the message is valid or not based
on custom rules, e.g., validate linkable ring signature.

We also have the following three functions which are used to commit to and
check commitments on the Bitcoin blockchain:

• ComputeAddress(Content): Used to deterministically compute a
Bitcoin address from the provided content.

107

• CommitToBTC(Address): Used to make a commitment to the blockchain
by sending a small amount to the provided Bitcoin address.

• GetAddressFirstSeen(Address): Used to check when (if ever) a
Bitcoin address has first received an amount of currency.

Algorithms

function ReceiveMessage(message)
if MessageValid(message) then

if Time > PostDeadline ∧ message /∈MHAccepted then
MLate ←MLate ∪ [message] . Mark message as late

else
M ←M ∪ [message] . Accept message

end if
end if

end function

Figure 22: Algorithm for processing incoming messages from posters. This
method is run whenever a new message is received. This method is

implemented in part of the received_message(message) method in
consensus_protocol.py.

function PostTimestampCommitment()
IBLT ←CreateIBLT(M)
Addr ←ComputeAddress(IBLT)
CommitToBTC(Addr)
PostMessage(TimestampCommitment, IBLT)

end function

Figure 23: Algorithm for timestamping valid messages and posting an
IBLT with the hashes of those messages. This method is run when the

posting phase ends and the timestamping phase begins. It is implemented
as the method do_commitment() in consensus_protocol.py

108

function ValidateCommitmentMessages
for all IBLT in IBLTSUnvalidated do

IBLTSUnvalidated ← IBLTSUnvalidated \ IBLT . Remove it first
Addr ←ComputeAddress(IBLT)
FirstSeen←GetAddressFirstSeen(Addr)
if FirstSeen is NULL then

continue . Never timestamped
end if
TxBlockNo, TxConfirmations← FirstSeen
if TxBlockNo ≥ TimestampingPhaseEndBlockNo then

continue . Timestamped too late
else if TxConfirmations ≤MIN CONFIRMATIONS then

continue . Too few confirmations
end if
IBLTSIncomplete ← IBLTSIncomplete ∪ IBLT . Validated

end for
end function

Figure 24: Algorithm for validating all received IBLTs. This algorithm is
run when the timestamping phase ends and the results phase begins. It is

implemented as the method validate_commitment_messages() in
consensus_protocol.py.

109

function ProcessCommitmentMessages()
repeat

Hashesnew ← ∅
for all IBLT in IBLTSIncomplete do

IBLT ←Copy(IBLT) . Create a copy
for all Hash in MHAccepted do

Delete(IBLT,Hash) . Subtract valid message hashes
end for
ResultIBLT , HashesIBLT ←ListEntries(IBLT)
HashesIBLTnew ← HashesIBLT −MHAccepted

if HashesIBLTnew = ∅ then
continue . Try next IBLT

end if
Hashesnew ← Hashesnew ∪HashesIBLTnew

if ResultIBLT = Complete then
IBLTSIncomplete ← IBLTSIncomplete \ IBLT

. IBLT is now completely processed
end if

end for
if Hashesnew 6= ∅ then

MHAccepted ←MHAccepted ∪Hashesnew
else
end if

until IBLTSIncomplete = ∅ or Hashesnew = ∅

for all m in MLate do
if m.Hash()∈ EntriesIBLT then

MLate ←MLate \m . Move m from MLate to M
M ←M ∪m

end if
end for

end function

Figure 25: Algorithm for processing all validated IBLTs. This algorithm is
run immediately after ValidateCommitmentMessages. It is

implemented as the method process_commitment_messages() in
consensus_protocol.py.

110

A.3 Py-EC

Py-EC is a Python wrapper of the OpenSSL elliptic curve functions. It can
be found on GitHub112. The rest of this section lists the contents of the
README file:

In Python, dealing directly with the OpenSSL library (through PyEl-
liptic 113) easily becomes a hassle with the use of C pointers and string
buffers.

To make things easier, I decided to make a wrapper for PyElliptic to
make the manipulation of elliptic curves and points more Pythonic.

The wrapper has been tested with all recommended SEC curves (secp192k1,
secp192r1, secp224k1, secp224r1, secp256k1, secp256r1, secp384r1,
secp521r1, sect163k1, sect163r1, sect163r2, sect233k1, sect233r1,
sect239k1, sect283k1, sect283r1, sect409k1, sect409r1, sect571k1 and
sect571r1).

Especially point addition and multiplication is way easier, as the follow-
ing console example usage shows:

A.3.1 Example use

>>> from curve import Curve

>>> c = Curve(’secp256k1’)

>>> c

Curve<Equation: y^2 = x^3+7 (mod p), Field: Prime field, p:

0xFFFEFFFFFC2F>

>>> c.p

115792089237316195423570985008687907853269984665640564039457584007908834671663L

>>> c.a

0

>>> c.b

7

>>> c.order

115792089237316195423570985008687907852837564279074904382605163141518161494337L

>>> c.G

Point<0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,

0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8>

>>> c.G.x

55066263022277343669578718895168534326250603453777594175500187360389116729240L

112https://github.com/jesperborgstrup/Py-EC
113https://github.com/yann2192/pyelliptic

111

https://github.com/jesperborgstrup/Py-EC
https://github.com/yann2192/pyelliptic

>>> c.G.y

32670510020758816978083085130507043184471273380659243275938904335757337482424L

>>> 4 * c.G + (255 * c.G)

Point<0xC2C80F844B70599812D625460F60340E3E6F36054A14546E6DC25D47376BEA9B,

0x86CA160D68F4D4E718B495B891D3B1B573B871A702B4CF6123ABD4483AA79C64>

>>> from keypair import KeyPair

>>> kp = KeyPair(c)

>>> kp

KeyPair<Private:0x5091AD80EEE3FB065A6E3FF126A112C4905F8E79566E22396807A55ADE1B5C6F,

Public:Point<0x13FCF42341462150B8366F11659E396DF88D19F65D533CEEAC78C9EC6F94B45D,

0x18DDDF6DCA0C097FC0359E680BAED36403D77657ABE7F76E64E1B787D90C485A>>

>>> kp.private_key

36442418189203456142546292588071998273845228785350611568921618467649899682927L

>>> kp.public_key

Point<0x13FCF42341462150B8366F11659E396DF88D19F65D533CEEAC78C9EC6F94B45D,

0x18DDDF6DCA0C097FC0359E680BAED36403D77657ABE7F76E64E1B787D90C485A>

A.3.2 Curves

Getting a curve instance A curve can be initialized in three ways; by its
name, id or by a pointer to an OpenSSL EC_GROUP instance:

>>> from curve import Curve

>>> Curve(curvename=’secp256k1’)

Curve<Equation: y^2 = x^3+7 (mod p), Field: Prime field, p:

0xFFFEFFFFFC2F>

>>> Curve(curveid=714)

Curve<Equation: y^2 = x^3+7 (mod p), Field: Prime field, p:

0xFFFEFFFFFC2F>

>>> from pyelliptic.openssl import OpenSSL

>>> Curve(openssl_group=OpenSSL.EC_GROUP_new_by_curve_name(714))

Curve<Equation: y^2 = x^3+7 (mod p), Field: Prime field, p:

0xFFFEFFFFFC2F>

Properties of a curve Depending on whether the curve is over a prime field,
Fp, or a power-of-2 field, F2m , the curve has slightly different properties:

• prime_type: Either ’prime’ or ’power-of-two’

• G: The base Point (or generator) of the curve.

• order: The order of the curve (number of elements)

112

• h: The cofactor of the curve

• a: The curve coefficient a

• b: The curve coefficient b

• p (Only Fp): The prime p specifying the field

• m (Only F2m): The integer m specifying the field

• poly_coeffs (Only F2m): The degrees of the polynomials specifying the
field

• os_group: A pointer to the underlying EC_GROUP instance.

>>> from curve import Curve

>>> c1 = Curve(’secp256k1’)

>>> c2 = Curve(’sect239k1’)

>>> c1

Curve<Equation: y^2 = x^3+7 (mod p), Field: Prime field, p:

0xFFFEFFFFFC2F>

>>> c2

Curve<Equation: y^2+xy = x^3+1, Field: Power-of-two field, f(x): x^239+x^158+1>

>>> c1.field_type

’prime’

>>> c2.field_type

’power-of-two’

>>> c1.G

Point<0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,

0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8>

>>> c2.G

Point<0x29A0B6A887A983E9730988A68727A8B2D126C44CC2CC7B2A6555193035DC,

0x76310804F12E549BDB011C103089E73510ACB275FC312A5DC6B76553F0CA>

>>> c1.order

115792089237316195423570985008687907852837564279074904382605163141518161494337L

>>> c1.h

1

>>> c1.a

0

>>> c1.b

7

>>> c1.p

115792089237316195423570985008687907853269984665640564039457584007908834671663L

>>> c2.m

239

>>> c2.poly_coeffs

[158]

113

A.3.3 Points

Getting a point instance You can get the base point from the G property of
a curve as described above:

>>> from curve import Curve

>>> Curve(’secp256k1’).G

Point<0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,

0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8>

You can also create a point on a curve from either (1) the x and y coordinates of
the point or (2) by a pointer to an OpenSSL EC_POINT instance:

>>> from curve import Curve

>>> from point import Point

>>> c = Curve(’secp256k1’)

>>> Point(c, x=255, y=255) # Invalid coordinates, only a demonstration

Point<0xFF, 0xFF>

>>> from pyelliptic.openssl import OpenSSL

>>> Point(c, openssl_point=OpenSSL.EC_POINT_new(c.os_group))

Point<0x0, 0x0>

Finally, you can hash a string directly onto a curve (using the ’try-and-increment’
method for finding points close to a certain x coordinate):

>>> from curve import Curve

>>> c = Curve(’secp256k1’)

>>> c.hash_to_point(’somestring’)

Point<0xE4998BB769D5AF19526738527E13ECF753F5CC7AA60DD0ADF94BB0A248CF577A,

0x79FCD45DD59999C5D916FB31C0F023B4A1A1BCD63F11FD3D3E31D5C5E7D79C1D>

>>> c.hash_to_point(’someotherstring’)

Point<0xB661EE62474532EF1C8EA78B1CE3634E2EEC06B8E256E46A5CE25DF0FFABF332,

0x1DAB745A01B745CA9BF276D8E990E8EF11CFA954C5956DF9BF4C0684FABB00A6>

Performing arithmetics Point addition and multiplication is intuitive:

>>> from curve import Curve

>>> c = Curve(’secp256k1’)

>>> c.G

Point<0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,

0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8>

>>> 2 * c.G

Point<0xC6047F9441ED7D6D3045406E95C07CD85C778E4B8CEF3CA7ABAC09B95C709EE5,

0x1AE168FEA63DC339A3C58419466CEAEEF7F632653266D0E1236431A950CFE52A>

114

>>> c.G + c.G

Point<0xC6047F9441ED7D6D3045406E95C07CD85C778E4B8CEF3CA7ABAC09B95C709EE5,

0x1AE168FEA63DC339A3C58419466CEAEEF7F632653266D0E1236431A950CFE52A>

>>> (5 * c.G) + (256 * c.G)

Point<0x9CF606744CF4B5F3FDF989D3F19FB2652D00CFE1D5FCD692A323CE11A28E7553,

0x8147CBF7B973FCC15B57B6A3CFAD6863EDD0F30E3C45B85DC300C513C247759D>

Properties of a points

• x: The x coordinate

• y: The y coordinate

• os_point: A pointer to the underlying EC_POINT instance.

A.3.4 Key pair

Getting a key pair instance A key pair for a curve can be generated ran-
domly or by providing a private key:

>>> from curve import Curve

>>> from keypair import KeyPair

>>> c = Curve(’secp256k1’)

>>> KeyPair(c) # Random key pair

KeyPair<Private:0x94087552C3C72CC867E555854B9DD6392A611A40C168B0C6B7AEFC63DD9F5818,

Public:Point<0x7C3FF4B9AE4D4EFCD22185F5ED7B6C8EF79CFF83AC0A3DFA4A258CDDBFC2AC3E,

0xEBFD9904CB8398524022BCDC268D6B03207737F35E7591EE5ACEE338D5272733>>

>>> KeyPair(c, private_key=12345)

KeyPair<Private:0x3039,

Public:Point<0xF01D6B9018AB421DD410404CB869072065522BF85734008F105CF385A023A80F,

0xEBA29D0F0C5408ED681984DC525982ABEFCCD9F7FF01DD26DA4999CF3F6A295>>

Alternatively, you can provide a pointer to an OpenSSL EC_KEY instance:

>>> from curve import Curve

>>> from keypair import KeyPair

>>> from pyelliptic.openssl import OpenSSL

>>> c = Curve(’secp256k1’)

>>> k = OpenSSL.EC_KEY_new_by_curve_name(714)

>>> OpenSSL.EC_KEY_generate_key(k)

1

>>> KeyPair(c, os_key=k)

KeyPair<Private:0xECBCB11DB69B0A8876986571E336A4F486E7B2C355712D2FA32C9836A153AAA,

Public:Point<0x732F6911AC325F41CEAB478D4D5AE3EB033A06EA8ECC03AF58CF2FF022A1FE5,

0x156B3C906BB70070B946F8565C425FEA00EA3350A71073F5B4818C96D41610C6>>

115

Properties of a key pair

• private_key: The private key (an integer)

• public_key: The public key (a Point)

• os_key: A pointer to the underlying EC_KEY instance.

116

A.4 Py-IBLT

Py-IBLT is a Python implementation of Invertible Bloom Lookup Tables, that I
created in order to use IBLT’s in the voting protocol. It is licensed under the
permissive MIT license and can be found on GitHub114. The rest of this section
lists the contents of the README file:

A.4.1 Notes

• Records that are deleted without a corresponding insert operation can be
recovered with the get and list_entries functions.

• Error detection using hashValueSum as described in the paper is currently
not implemented.

• Duplicate keys are not supported.

A.4.2 Usage

Constructor Use the constructor to create a new IBLT:

>>> from iblt import IBLT

>>> t = IBLT(m, k, key_size, value_size, hash_key_sum_size=10, hash=None)

• m is the number of cells in underlying lookup table, and is closely related to
the threshold value that determines how many key/value pairs the IBLT can
hold before giving inconclusive answers to queries.

• k is the number of hash functions to be used.

• key_size is maximum size for keys.

• value_size is maximum size for values.

• hash_key_sum_size is number of bytes used for the hashkeySum field.

• hash is function(i, value), where i is index of hash function and value is
value to be hashed (or None for default hash functions).

Insert and delete The insert function inserts a key/value pair into the IBLT.

>>> t.insert(key, value)

The delete function likewise deletes a key/value pair from the IBLT.

>>> t.delete(key, value)

The insert and delete functions do not have any return values.

114https://github.com/jesperborgstrup/Py-IBLT

117

https://github.com/jesperborgstrup/Py-IBLT

Retrieving a value based on a key The get function tries to retrieve a
value by key and gives you additional information on how the operation went:

>>> t.get(key)

For the get function, the return value is (<Result>, <Value>). The <Result>
value can be one of the following four possibilities:

• IBLT.RESULT_GET_NO_MATCH It is certain that no such key exists in the table.
<Value> is None.

• IBLT.RESULT_GET_MATCH The key was previously inserted into the table and
the value is returned in <Value>.

• IBLT.RESULT_GET_DELETED_MATCH The key was found, but it had been deleted
instead of inserted and the value is returned in <Value>.

• IBLT.RESULT_GET_INCONCLUSIVE It wasn’t possible to determine if the key
was in the table or not. <Value> is None.

Listing entries The list_entries\verb function tries to extract a complete
list of all entries in the table. It either returns all entries or an incomplete list:

>>> t.list_entries()

The return value of list_entries is (<Result>, [<Entries>],

[<Deleted entries>]).
The <Result> value is one of two possibilities:

• IBLT.RESULT_LIST_ENTRIES_COMPLETE The entries lists are complete.

• IBLT.RESULT_LIST_ENTRIES_INCOMPLETE: It wasn’t possible to extract a
complete listing. Only the returned entries were recoverable.

The <Entries> list contains all recoverable entries that have been inserted into
the table. Likewise, the <Deleted entries> list contains all recoverable entries
that have been deleted from the table without being inserted.

Serializing and unserializing Table instances have a serialize function,
that takes no argument and serializes the data and metadata of the table for into
a bitstring storage or communication.

Likewise, the IBLT class has a static unserialize function that takes the
serialized bitstring and constructs a copy of the table from the bitstring.

t is an IBLT instance

>>> s = t.serialize()

Prints True

>>> print IBLT.unserialize(s) == t

118

Serialized data format:

[Magic bytes][Header][Data]

4 bytes 24 bytes

Magic bytes:

0x49 0x42 0x4C 0x54 (ASCII for IBLT)

Header:

[Cell count (m)]

32-bit uint

[Key sum length][Value sum length]

32-bit uint 32-bit uint

[HashKeySum length][ValueKeySum length]

32-bit uint 32-bit uint

[# hash funcs (k)]

32-bit uint

Data:

For each of the m cells:

[Count][keySum][valueSum][hashKeySum][valueKeySum]

32-bit int

119

A.5 Bitcoin blocks with timestamps smaller than previous
blocks

This list was created by downloading the complete blockchain from https://

bitcoin.org/bin/blockchain/ and running the following Java code. The Java
code requires bitcoinj downloadable from https://bitcoinj.github.io/

Java code
import java.io.File;

import java.util.ArrayList;

import java.util.Deque;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

import java.util.Map.Entry;

import javax.xml.crypto.dsig.keyinfo.KeyValue;

import org.bitcoinj.core.Block;

import org.bitcoinj.core.NetworkParameters;

import org.bitcoinj.params.MainNetParams;

import org.bitcoinj.utils.BlockFileLoader;

public class MedianTimestampAnalyzer {

public static void main(String[] args) {

NetworkParameters np = new MainNetParams();

List<File> blockChainFiles = new ArrayList<>();

blockChainFiles.add(new File("Q:/bootstrap.dat"));

BlockFileLoader bfl = new BlockFileLoader(np, blockChainFiles);

Deque<Long> previousTimestamps = new LinkedList<Long>();

Map<Integer, List<Integer>> blockMap = new HashMap<Integer, List<Integer>>();

int i = -1, blocksBack = 0;

for (Block block: bfl) {

i++;

long blockTimestamp = block.getTimeSeconds();

if (previousTimestamps.size() < 20) {

// Fill up queue with the first blocks

previousTimestamps.addFirst(blockTimestamp);

continue;

}

blocksBack = 0;

for (Long previousTimestamp: previousTimestamps) {

if (blockTimestamp > previousTimestamp) {

break;

} else {

blocksBack++;

}

}

if (blocksBack > 0) {

if (!blockMap.containsKey(blocksBack)) {

blockMap.put(blocksBack, new LinkedList<Integer>());

}

blockMap.get(blocksBack).add(i);

}

// Update queue

previousTimestamps.removeLast();

previousTimestamps.addFirst(blockTimestamp);

}

for (Entry<Integer, List<Integer>> entry: blockMap.entrySet()) {

System.out.println("Blocks with timestamp smaller than " + entry.getKey() + " blocks back (" + entry.getValue().size() + "):");

for (Integer block: entry.getValue()) {

System.out.print(block + ",");

}

System.out.println();

System.out.println();

}

}

}

120

https://bitcoin.org/bin/blockchain/
https://bitcoin.org/bin/blockchain/
https://bitcoinj.github.io/

Timestamp smaller than 3 blocks back (105)

23993, 24078, 24622, 32650, 33271, 39218, 53471, 54108, 54232, 55346,
62834, 64489, 65618, 65806, 65885, 66018, 66169, 66176, 66215, 66270,
66403, 66449, 66454, 66461, 66617, 66636, 67591, 67612, 67699, 67805,
68984, 69650, 70071, 70927, 71527, 72670, 77911, 85649, 161226, 177233,
177568, 197765, 201167, 203326, 203678, 205536, 208411, 244773, 267843,
270033, 270728, 270977, 272304, 272816, 276342, 278075, 279210, 280048,
282094, 282229, 284190, 284504, 284523, 284541, 289121, 290124, 291305,
291730, 293110, 293831, 294040, 294264, 294631, 295969, 296283, 296484,
296604, 297363, 297728, 297778, 297889, 299214, 299278, 299312, 299404,
299547, 300042, 300419, 303358, 304919, 305147, 305753, 306112, 306383,
307360, 309110, 309581, 310932, 311194, 311266, 311475, 312750, 315073,
316331, 316596

Timestamp smaller than 4 blocks back (41)

24068, 24176, 58910, 59335, 59373, 59959, 60823, 61550, 62651, 62808,
63431, 63773, 63814, 64041, 65665, 65817, 65845, 65946, 66108, 66288,
66297, 66339, 66351, 66956, 67381, 67660, 68463, 68686, 68997, 69330,
70871, 271374, 280512, 281485, 284176, 292848, 295902, 297805, 298315,
303390, 314626

Timestamp smaller than 5 blocks back (55)

24157, 32634, 38084, 38138, 38146, 44054, 46091, 46100, 46362, 56945,
57060, 60025, 60131, 60169, 61492, 61563, 61769, 61928, 61970, 62557,
63637, 63843, 63936, 63958, 63971, 64499, 64545, 65704, 65796, 65895,
65964, 66012, 66071, 66476, 66504, 66619, 66996, 67276, 67359, 67409,
67445, 67694, 67795, 67814, 68021, 68103, 68115, 68754, 83398, 86903,
155101, 156368, 196493, 278850, 316455

121

A.6 Proof-of-work average times

This section shows the raw data from computing proof-of-work for votes
with a varying amount of voters. The amount of voters decide the size of
the vote as shown in table 13 on page 83.

In the below data, AV is approximate the amount of voters115, PL shows
the payload length, the vote size, Target shows the target value which the
proof-of-work must be smaller than, Log2(target) is the binary logarithm
of the target value. Finally, seconds is the average amount of seconds it
took to compute the proof-of-work over 20 tries on my Lenovo Thinkpad
E420s.

AV: 2, PL: 169, Target: 15728096840420, Log2(target): 43.838409, seconds: 4.733

AV: 2, PL: 195, Target: 15379336277000, Log2(target): 43.806058, seconds: 3.241

AV: 4, PL: 233, Target: 14911715495905, Log2(target): 43.761511, seconds: 5.350

AV: 5, PL: 286, Target: 14296943048983, Log2(target): 43.700772, seconds: 2.772

AV: 8, PL: 361, Target: 13509291114218, Log2(target): 43.619017, seconds: 4.011

AV: 11, PL: 467, Target: 12532829268770, Log2(target): 43.510777, seconds: 6.348

AV: 16, PL: 617, Target: 11370528884633, Log2(target): 43.370365, seconds: 4.912

AV: 22, PL: 829, Target: 10052142008875, Log2(target): 43.192568, seconds: 7.369

AV: 32, PL: 1129, Target: 8636047537084, Log2(target): 42.973508, seconds: 6.597

AV: 45, PL: 1553, Target: 7201344005439, Log2(target): 42.711403, seconds: 9.855

AV: 64, PL: 2153, Target: 5831317858056, Log2(target): 42.406959, seconds: 8.323

AV: 90, PL: 3001, Target: 4595032145708, Log2(target): 42.063212, seconds: 12.641

AV: 128, PL: 4201, Target: 3535117324832, Log2(target): 41.684895, seconds: 16.852

AV: 181, PL: 5897, Target: 2665578639368, Log2(target): 41.277586, seconds: 32.285

AV: 256, PL: 8297, Target: 1977642810202, Log2(target): 40.846919, seconds: 42.094

AV: 362, PL: 11690, Target: 1448841694425, Log2(target): 40.398037, seconds: 49.702

AV: 512, PL: 16489, Target: 1051297684627, Log2(target): 39.935308, seconds: 64.725

AV: 724, PL: 23275, Target: 757395898616, Log2(target): 39.462257, seconds: 85.839

AV: 1024, PL: 32873, Target: 542796481163, Log2(target): 38.981620, seconds: 115.876

AV: 1448, PL: 46445, Target: 387517695437, Log2(target): 38.495471, seconds: 167.168

AV: 2048, PL: 65641, Target: 275898398980, Log2(target): 38.005346, seconds: 194.379

AV: 2896, PL: 92786, Target: 196041720131, Log2(target): 37.512370, seconds: 420.670

AV: 4096, PL: 131177, Target: 139102455090, Log2(target): 37.017357, seconds: 371.777

AV: 5792, PL: 185468, Target: 98601724265, Log2(target): 36.520894, seconds: 461.694

AV: 8192, PL: 262249, Target: 69843172078, Log2(target): 36.023400, seconds: 806.083

AV: 11585, PL: 370832, Target: 49447372827, Log2(target): 35.525175, seconds: 1174.644

115The set of amount of voters is calculated as {2x/2 | x ∈ [2, 28]}

122

	Introduction
	Possible use cases
	The decentralized deadline consensus problem
	Structure of the thesis

	Theory
	Elliptic curve cryptography
	Proof-of-work
	Bitcoin and blockchains
	Bitmessage
	Invertible Bloom Lookup Tables
	Voting theory
	Linkable ring signatures

	The decentralized deadline consensus protocol
	A shared bulletin board
	Deadlines on the Bitcoin blockchain
	Timestamping on the Bitcoin blockchain
	The participants
	The phases of the protocol
	The message interpretation layer

	The voting protocol
	Re-voting

	Implementation of the protocols
	Using Bitmessage as the shared bulletin board
	Invertible Bloom Lookup Tables
	Blockchain usage
	Linkable ring signatures
	Relevant source files

	Evaluation
	Scalability
	Threat model
	Voting properties satisfied
	Extensibility
	Possible improvements

	References
	Appendix
	Using the voting client
	Pseudocode for consensus protocol
	Py-EC
	Py-IBLT
	Bitcoin blocks with timestamps smaller than previous blocks
	Proof-of-work average times

