
Experience Report: Mirroring reFLect to OCaml

Michel Mauny
ENSTA

Michel.Mauny a©ensta.fr

Nicolas Pouillard
INRIA Paris-Rocquencourt
Nicolas.Pouillard a©inria.fr

Abstract
We report in this paper on our experience in the design and im-
plementation of a tool for migrating reFLect code to OCaml. Mi-
gration proceeds by translating program parts to pure OCaml code,
and binding the rest of the reFLect program as OCaml primitives.
Linking both reFLect and OCaml runtime systems into a single exe-
cutable allows running partially translated applications.

1. Introduction
Code migration from a programming language S to a language T
is a difficult task. Ideally, it could consist in a translator encoding
more or less directly the semantics of S programs into T . If the
resulting T code is meant to be readable, the encoding must be
rather direct, which is possible when language S is close to a sub-
language of T .

For numerous reasons, designing a complete translator able to
translate any S program into T is a task whith a rather high failure
probability. Translating exhaustively all language features not only
requires S to be completely defined, but may also involve impor-
tant resources (manpower) for some exotic, rarely used features.
Furthermore, S may provide a rather big primitive environment,
whose re-implementation through T ’s foreign function interface
(FFI) may require more resources than available.

Most systems that are actively used are also being modified and
extended. This presents a problem for anyone who wants to move
an application from one language to another because it requires
that development be put on hold while the translation is completed.
For large complex systems that could be a deal breaker as the
translation is going to be time consuming.

Alternatively to such a complete translation project, one may
provide a migration tool able to translate part of a complete S
program P into T , and to expose the rest of P as foreign primitives
to the translated part. Linking together the T runtime system, the
translated part of program P , the bindings of the un-translated part
of P , and the S runtime system, one should be able to run the
partially translated application. This is the path that we followed
for designing a migration tool from the reFLect (Grundy et al. 2006)
programming language to Objective Caml (Leroy et al. 2008).

We report in this paper our experience in the design and im-
plementation of this migration tool. After the short description of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Submitted to ICFP 31 August – 2 September 2009, Edinburgh.
Copyright c© 2009 ACM [to be supplied]. . . $5.00

the context of this project given in section 2, section 3 gives the
architecture of the migration tool. The main characteristics of the
translation process are described in section 4 and the generation
of bindings is described in section 5. Section 6 discusses some of
the aspects of the languages involved in this development that have
been either useful or otherwise.

2. The project
The Forte (Seger et al. 2005) formal verification environment in-
tegrates model-checking tools and theorem proving in a general
purpose lazy functional language named reFLect. The distinctive
features of reFLect are the inclusion of binary decision diagrams
(BDDs) as primitive objects generalizing boolean constants and op-
erations, the availability of reflection operations used to construct
and decompose expressions in the reFLect language itself, and an
ML type discipline extended with a flexible overloading layer.

The goal of the project that we describe here is to provide a path
for migrating reFLect code to OCaml. Fortunately, we did not need
to write a parser and type-checker for reFLect. We have been able
to reuse the front-end of a reFLect compiler built during another
project. This compiler is named CaFL and has been designed and
implemented by Virgile Prevosto and the authors, with the help of
Damien Doligez.

The project aims at producing a migration tool that should be
able to translate a reFLect file into a legal OCaml source file. We
want to be able to run the whole program, even when the whole
source has not yet been translated. This allows applications being
migrated to reuse existing reFLect primitives, libraries and program
parts, and thus adds flexibility to the migration process.

3. The big picture
As described above, this project needs the following components:

1. a translator from reFLect to OCaml, that encodes reFLect laziness
into the (strict) OCaml language;

2. an interface generator that binds reFLect code to OCaml, making
it available to OCaml as a set of primitives.

The flexibility of this tool comes from the possibility of progres-
sively moving the frontier between binding and translation: we can
translate part of a reFLect application, and bind the rest of its code
to OCaml. Linking the code produced by the OCaml compiler to
the reFLect runtime system enables running the application whose
part has been translated.

Figure 1 sketches the code organization of the resulting, partly
translated, applications. The translated part, in grey, is OCaml code
that may call C primitives through OCaml’s FFI. The un-translated
part is made of reFLect code bound to OCaml as primitives, and
using its own set of primitives written in C or C++, through reFLect’s
FFI .

Figure 1. The code of a partially translated program. Double ar-
rows denote direct interactions, and the grey arrow shows the mi-
gration progress.

When more reFLect gets translated to OCaml, less reFLect re-
mains as primitive, augmenting the grey area on figure 1. A com-
plete translation to OCaml of a reFLect application needs not only
to translate all reFLect code, greying out all reFLect source code
of the application, but also requires binding to OCaml all reFLect
primitives written in C/C++ using OCaml’s FFI, eliminating the
usage of reFLect’s FFI. The reFLect language has such a rich pre-
defined environment—several thousands of primitives and library
functions—that a complete translation to OCaml is not realistic.

4. Translation from reFLect to OCaml
The translation of reFLect programs to OCaml has to perform two
main tasks: overloading resolution and encoding of laziness.

The CaFL front-end implements a complete reFLect parser and
type-checker and produces desugared programs where overloading
has been resolved. When an occurrence of an overloaded symbol
can be statically resolved, it is immediately replaced by the corre-
sponding instance of the symbol. When the static context does not
provide enough information, the current definition receives an ex-
tra formal parameter that will eventually be instantiated at call sites
with the actual value it denotes at that point. reFLect has named
arguments and CaFL also erases names and reorders arguments.
Finally, although CaFL processes reflection features, we chose to
postpone their translation into OCaml to a later phase of the project.

The output of this parsing/typing front-end can be seen as an
OCaml, implicitly lazy, source program. In the following, we write
LOCaml for this “Lazy OCaml” language. The next step of the
translation consists in making laziness explicit using essentially the
following rules (Mauny 1991), which translate the core of LOCaml
into OCaml:

Je1 e2K = Je1K(lazy Je2K)
Jλx.eK = λx.JeK
JxK = Lazy.force x

This translation delays the computation of function arguments and
forces the evaluation of the values resulting from looking up vari-
ables. These rules easily extend to a complete language, includ-
ing data structures whose components evaluation is performed only
when they are accessed.

The OCaml construct1 (lazy e) has type (τ Lazy.t) when e
has type τ , and (Lazy.force e) has type τ if e has type (τ Lazy.t).
This translation scheme preserves typability: it changes legal, im-

1 lazy is a keyword in OCaml.

plicitly lazy, LOCaml source code to legal OCaml source code with
explicit laziness.

Although it may look superfluous, the LOCaml intermediate
step is important for the readability of the translation: the final
OCaml translation of an original piece of reFLect is polluted by
lots of lazy constructs and calls to Lazy.force and is itself very
difficult to read. The LOCaml version can therefore be thought of
as the translation, abstracting out the evaluation strategy. Getting
closer to OCaml would consist in removing as much laziness as
possible in translated programs, keeping only the laziness with-
out which the program would crash or consume too much time
or space. Adding—possibly manually—laziness annotations at ap-
propriate places of a LOCaml source program might be a way of
changing an implicitely lazy program into a mostly strict OCaml
program, final result of a successful migration.

5. Binding reFLect to OCaml
As already mentioned, the amount of reFLect/C/C++ code to be
rewritten to OCaml, as well as the amount of C/C++ code to bind
directly to OCaml using OCaml’s FFI was so big that one could not
reasonably aim at a tool able to perform a full migration of reFLect
applications. Binding reFLect to OCaml was therefore mandatory.
We started with a basic low-level interface between reFLect and
OCaml on top of which we designed a more sophisticated type-
safe interface based on the structure of types of the reFLect values
to be imported to OCaml.

5.1 At the low level
The OCaml and reFLect runtime systems are rather different from
each other: the evaluation of reFLect uses graph reduction, and its
memory manager uses reference counting techniques assisted by a
mark and sweep collector for scavenging unreachable cycles and
tracing memory blocks with saturated reference counts. OCaml, as
a strict language, uses a more conventional execution model and
performs memory recycling using tracing techniques.

Memory management Both reFLect and OCaml provide ways to
inform their respective memory managers that pointers to local
memory are used remotely, and both enable developers to register
finalization procedures to be used when local memory has been
remotely released. It has therefore been rather easy to establish and
handle pointers to remote data from each of the memory spaces. We
also knew that we could have to face problems for collecting free
cyclic structures spanning over the two memory spaces (Plainfossé
and Shapiro 1995), but we chose to ignore them at that point of
the project, as long as they do not block the execution of translated
code.

Evaluation The reFLect graph reduction and the encoding of lazi-
ness in OCaml each have their own invariants, and exporting to
reFLect an OCaml suspension that involves reFLect graphs, handling
themselves OCaml values, gave us quite a few headaches!

The translation of LOCaml to OCaml is such that Lazy.force
produces an OCaml value (assuming no exception is raised) that is
not a suspension. This can be checked by a mere inspection of the
translation rules given at section 4. In other words, forcing once is
sufficient. In reFLect, forcing the evaluation of a graph is supposed
to produce a value in weak head normal form.

Extending those invariants to the reFLect/OCaml cooperation
implies that:

• when a reFLect object (a graph) is imported to OCaml as a
primitive, it must be represented as a suspension whose forcing
should fire the evaluation of the graph on the reFLect side;

• when an OCaml suspension is exported to reFLect, it must be
exposed as a graph to the reFLect graph reducer, and evaluating

that graph in reFLect should Lazy.force the OCaml suspension,
if needed.

Importing and handling reFLect graphs Using reFLect dynamic
features such as introspection of the runtime environment, we can
list the reFLect primitives and (library or user-defined) functions that
we may want to use from OCaml. Importing them effectively is
then a matter of obtaining their value through the reFLect interpreter,
and declaring them to OCaml as external data of a specific abstract
type named fl.

Instead of using reFLect graphs from OCaml as untyped external
data, we provide the abstract type fl with a type parameter. For
instance, the type ((α→ α) fl) is the (phantom) type of reFLect
graphs that implement functions from α to α. Importing reFLect
values to OCaml is performed during the initialization of the result-
ing program, immediately asserting the conformity of the expected
OCaml type with the actual reFLect type computed by the reFLect
interpreter.

5.2 A type-safe interface
With such statically typed data and a few primitive operations,
it is possible to build a rather complete, type-safe, interface be-
tween reFLect and OCaml. For instance, if we know how to
build application graphs from OCaml with a function of type
(α→ β) fl→ α fl→ β fl, we are able to compute the appli-
cation of an external function g1 with OCaml type (τ1→τ2) fl to
an external argument g2 : τ1 fl.

A closer look at the type (α→ β) fl→ ((α fl) → (β fl))
of this graph building function tells us that this function imports the
(functionality denoted by the) arrow type constructor from reFLect
to OCaml. This mechanism can be generalized to the whole reFLect
type algebra: given primitives implementing the imported seman-
tics of data constructors (e.g. how to represent in OCaml the reFLect
list constructors), compute mechanically a function that changes
a reFLect data of type (α list) fl into an OCaml data of type
(α fl) lazy_list. This is a marshaling function automatically
computed from the structure of types.

5.3 Code migration: translating more, binding less
We used this process to mechanically generate thousands of bind-
ings. Clearly, such an automatic generation is both more efficient
and less error-prone than manual binding of primitives. More im-
portantly, it gives us the flexibility that we were looking for. Being
able to bind arbitrary reFLect code to OCaml, and not only a fixed
set of primitives, enables us to choose which part of the code is to
be translated and which has to be bound as primitive operations.

6. Discussion
We list here some of the language features that have been important
to the project.

6.1 Meta-programming features
Reflection/Introspection in the reFLect language The reFLect
system provides ways to dynamically inspect its current global
environment by giving access to the global symbol table: one can
list all globally defined values and types, and for each of them,
access some of their properties like their fixity (infix, postfix, etc.),
their type, whether they are overloaded or not. . . . The generation of
reFLect bindings uses these features to list the symbols to be bound
to OCaml, and to compute at what type they will be usable by the
OCaml part.

The interactive nature of reFLect and the availability of evalua-
tion functions have also been of great help for the project. Inter-
action enables dynamic loading of code that performs the extrac-
tion of the current symbols to be bound into OCaml, and, while

computing bindings, the type information inferred by the evalua-
tion function is compared to the type expected on the OCaml side.
This comparison is an assertion whose failure corresponds to an
internal bug of our tool.

Syntax extensions using CamlP4 Another big win of meta-
programming in this context is the heavy usage of compile time
code transformations performed by sophisticated pre-processing
techniques.

The OCaml system is shipped with a user-programmable pre-
processor called CamlP4 whose aim is to extend the OCaml syn-
tax with domain specific notations. Ranging from aesthetic short-
cuts to new constructs involving complex code transformations or
hiding unsafe function calls, the CamlP4 extensions that we used
constitute a complete mechanism for the high-level specification of
reFLect to OCaml bindings.

CamlP4 provides parsers and printers for the whole OCaml
language that have been used when programming the translator
from LOCaml to OCaml, which encodes laziness into OCaml.

6.2 The type algebra
The reFLect and OCaml type algebras have a common subset from
which we established an automatic generation of marshaling func-
tions, based on the type structure of the objects to be marshaled.
The similarities between reFLect and OCaml types in this subset
and the algebraic nature of the type structure enabled this automatic
generation of “type-based cross-language marshaling” functions.

Still, reFLect has types or features that either have no correspon-
dent in OCaml: overloading and named arguments of data construc-
tors are eliminated by the CaFL front-end, and the types whose
OCaml counterparts are either not obvious or simply not yet ad-
dressed are left as external (abstract) types.

6.3 Built-in OCaml laziness
The OCaml built-in constructs and primitives for encoding laziness
are intensively used in this project.

In reFLect, top-level declarations may be polymorphic. Encoding
their lazy nature with a mutable cell holding the computation of a
polymorphic value would be forbidden by the ML type discipline.
The OCaml (lazy _) construct is considered as non-expansive, just
like a function abstraction, and its type can safely be generalized.

The translation scheme that we use (see section 4) generates
lots of suspensions and calls to Lazy.force. Creating a suspension
holding an expression is operationally useless when the expression
is already a value (for instance a constant or an abstraction). For
efficiency reasons, such suspensions should be avoided, but naively
omitting the lazy construct is not possible because it would break
the typability of the whole program.

The OCaml runtime system represents suspensions as blocks
holding a special tag lazy_tag. When a suspension is forced into
a value, its original block gets updated with the value and be-
comes an indirection block by changing its tag into forward_tag.
Since indirection blocks are immutable and admit only one opera-
tion (Lazy.force), they may safely be eliminated by the garbage-
collector, as long as sharing is preserved and Lazy.force is aware
of all possible representation of evaluated lazy values (Doligez
2008). It is therefore safe to compile (lazy e) as e when it is safe
to evaluate e at this point of the program. Currently, when e is a
constant, an identifier or an abstraction, then

• if its type cannot be float2 or (τ Lazy.t) for some τ , (lazy e)
gets compiled as e;

2 For optimizing data structures holding floating point numbers, the OCaml
compiler assumes that only expressions of type float can have a float
representation.

• otherwise, we generate code for computing the value of e and
put it in an indirection box.

Making laziness explicit also produces lots of calls to Lazy.force
that first test the tag of their argument, and according to the tag
either force the suspension or perform a projection. We modified
the OCaml compiler in order to inline the tag tests, and project the
value whenever possible. This way, a function call is performed
only when there is some real work to be done.

We introduced these optimizations in the OCaml 3.11 compiler.
This, together with the special typing of suspensions, simplified a
lot the task of encoding a lazy ML in OCaml.

6.4 Compilers don’t like generated programs
Program generation is one of those subjects about which compiler
writers and intensive users may quarrel. Should a compiler do
its best to “swallow” any program, or should program generators
always remain under the compilers’ limits? The first option is a
nightmare for compiler writers: they prefer to concentrate their
efforts on good code generation rather than be able to compile
programs that no human being could have produced “by hand”.
The second option looks reasonable, but program generators often
have to guess where the limits are and in what way they depend on
the current architecture.

Of course, we have been bitten by such limits of the OCaml
environment. The OCaml parser provided by CamlP4 processes
source files in one shot, and big files hit the limits enforced by
the operating system. In order to perform global optimizations,
the amount of stack space used by one of the native code OCaml
compilers depend on the size of their input file.

The solution is clearly to design the translator in such a way
that it produces outputs of reasonable size, and to warn its users
that they should translate and bind reFLect code in a modular way,
whenever possible.

6.5 OCaml and reFLect runtime cooperation
Establishing a tight cooperation between the OCaml and reFLect
runtime systems has been a crucial step in our project. However,
the legend says that memory management is tricky and error-prone,
and that bugs are difficult to track and identify. Interfacing the
reFLect and OCaml memory managers did not contradict this belief!

OCaml and reFLect provide similar ways of informing their re-
spective garbage collectors (GCs) that memory blocks pointed to
by local C/C++ variables should not be recycled. This management
of roots is sufficient to be safe for tracing techniques, where un-
reachability is the only criterion used for releasing memory: at the
C level, once global and local pointers to memory blocks are de-
clared as roots, one may safely concentrate on the actual computa-
tions to be programmed.

On the other hand, the correctness of reference counters with
respect to effective reachability is a permanent issue: counters have
to be adjusted during the computations, and forgetting to increment
one of them quickly leads to a disaster.

Even with their well-known weaknesses, reference counting
techniques remain intellectually pleasant and seem easy to work
with. On the other hand, generational copying collectors are known
to be efficient, and well adapted to functional languages and to cur-
rent hardware. Still, programmers may worry about handling point-
ers to data that are moved by the GC. Our experience confirms that
in fact, reference counting needs more management than tracing
techniques, which impose only the requirement to inform the GC
where the memory roots are, and to make sure that only indirect
pointers to memory are used when a copying GC may occur.

7. Conclusion
We reported in this paper on the design and implementation of
a migration tool from reFLect to OCaml. Even though both lan-
guages share major features such as higher-order functions and a
static ML-like typing discipline, migrating real code from reFLect
to OCaml is not that easy. Partial translation and runtime coopera-
tion may represent a reasonable migration path. Obviously, a deep
knowledge of both languages as well as of their implementations is
necessary for the success of such a project. Furthermore, language
features such as meta-programming tools, the ML type discipline
and the algebraic nature of its type algebra, built-in alternative eval-
uation strategies, and foreign function interfaces have been, among
others, invaluable tools.

References
Damien Doligez. Lazy evaluation. in (Leroy et al. 2008), 2008.
Jim Grundy, Tom Melham, and John O’leary. A reflective func-

tional language for hardware design and theorem proving. J.
Funct. Program., 16(2):157–196, 2006. ISSN 0956-7968. doi:
http://dx.doi.org/10.1017/S0956796805005757.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon). The Objective Caml system, release 3.11, 2008. URL
http://caml.inria.fr/distrib/ocaml-3.11/ocaml-3.11-re-
man.pdf.

Michel Mauny. Integrating lazy evaluation in strict
ML. Technical Report 137, INRIA, 1991. URL
http://www.mauny.net/data/papers/mauny-1992a.pdf.

David Plainfossé and Marc Shapiro. A survey of distributed garbage
collection techniques. In Henry G. Baker, editor, Proc. Int. Workshop
on Memory Management (IWMM), volume 986 of Lectore Notes in
Computer Science, pages 211–249, Kinross, Scotland (UK), September
1995. Springer Verlag.

C.-J.H. Seger, R.B. Jones, J.W. O’Leary, T. Melham, M.D. Aagaard, C. Bar-
rett, and D. Syme. An industrially effective environment for formal
hardware verification. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 24(9):1381–1405, September 2005.
ISSN 0278-0070. doi: 10.1109/TCAD.2005.850814.

