
Counting on Type Isomorphisms

Daniel Gustafsson and Nicolas Pouillard

IT University of Copenhagen, Denmark

Keywords: Agda, Type Theory, Homotopy Type Theory, Formal reasoning,
Combinatorics, Isomorphisms, Parametricity, Probabilistic Reasoning

Abstract. Big operators, such as
∑

x∈A f(x),
∧

x∈A f(x) are the iter-
ated versions of the binary operators + and ∧. They are common in
mathematics and we propose tools to reason about them within a Type
Theory such as Agda. Using a polymorphic encoding of binary trees one
can lift any binary operator to the corresponding big operator. Thanks
to the parametricity of this encoding one can easily lift properties of the
binary operator to the corresponding big operator. In particular big op-
erators such as sums and products can be put in correspondence with
the cardinality of Σ-types and Π-types which enforces a correct im-
plementation. Moreover these correspondences enable the use of type
isomorphisms as a powerful reasoning tool. For instance using a stan-
dard isomorphism on Σ-types yields a constructive proof that adequate
summation functions are invariant under permutations.

1 Introduction

Iteration of binary operators is found in the formalizations of various theories.
For any binary operator such as +, ∧, max, etc. there is a corresponding iterated
version called the big operator (

∑
x∈A f(x),

∧
x∈A f(x), maxx∈A f(x), etc.) Big

operators share a common construction and therefore one should be able to
reason about them in a unified fashion. In the Isabelle [1] proof assistant,
reasoning about big operators is part of the standard library of theories. However,
big operators in Isabelle are built from classical set theory and we wish to
adopt a constructive style allowing direct program execution. In the constructive
setting, Bertot et al. already studied how to give some properties of big operators
given the properties of the small one. Their work led to the bigops [2] library
using the Coq [3] proof assistant. Given a big operator

⊕
x∈A f(x), the index

set A is a list in the bigops library while it is a type in our setting. Since our
approach focuses on big operators which iterates over types, it enables a rich use
of type isomorphisms. These type isomorphisms are both used to specify and
reason about big operators.

By having an abstract theory of big operators we can prove properties which
hold for all big operators. It is possible to lift properties from an arbitrary small
operator to the corresponding big operator. The following lemma is an example
of a property that is easily proven within our framework. Any homomorphism f

acting on two small operators ⊕ and ⊗ (i.e. ∀xy, f(x ⊕ y) ≡ f(x) ⊗ f(y)) can
be lifted to the corresponding big operators

⊕
and

⊗
working on a body g

represented by a function: f
(⊕

x∈A g(x)
)
≡
⊗

x∈A f(g(x)).
One use of this lemma is to pick + and ∗ as the small operators, the expo-

nentiation function forms the homomorphism. Another use would be to pick ∧
and ∨ on {0, 1}, where the De Morgan law makes ¬ the homomorphism:

b
∑

a∈A g(a) ≡
∏
a∈A b

g(a) ¬
(∨

a∈A g(a)
)
≡
∧
a∈A ¬g(a)

Uniform discrete probabilities can solely be described by summation func-
tions. Indeed since the universe of events Ω is finite the following holds1:

Pr[A|B] ≡ Pr[A ∩B]

Pr[B]
≡] (A ∩B)

] (B)
≡
∑
x∈Ω A(x) ∧B(x)∑

x∈Ω B(x)

Cardinality in type theory: By type theory we mean any dependent type theory
similar to Per Martin-Löf type theory [4] or the Calculus of Construction [5].
In such a theory, types have an algebraic structure with] (disjoint union)
and × (cartesian product) as addition and multiplication. When looking at
the cardinality of types, these corresponds to addition and multiplication. Fur-
thermore Σ-types and Π-types can be seen as big operators for] and × ,
satisfing the following cardinality equations for finite sets:

] (Σ A F) ≡
∑

x∈A] (F x)] (Π A F) ≡
∏

x∈A] (F x)

We cannot reason directly with cardinalities inside type theory since its car-
dinalities are not internalised. However we can still reason about them by using
finite types and type isomorphisms, since if two types are isomorphic they have
the same cardinality assuming the types are sets. Summation functions can then
be related to the cardinality of the corresponding Σ-type. With this correspon-
dence we can show that summations are stable under isomorphisms:

∀(π ∈ A ∼= B),
∑
x∈A

f(π(x)) ≡
∑
y∈B

f(y)

We aim at making our results and developments compatible with the univa-
lent foundation of mathematics [6]. More precisely our results should carry over
any implementation of homotopy type theory such as Coq [3] and Agda [7]. In
particular the bigops library could be extended to our use of type isomorphisms.
Moreover the univalent setting makes the use of isomorphisms significantly more
convenient.

Contributions:

– We give a definition of being an “adequate” summation function, namely
that each value is applied exactly once. Adequacy of summation functions

1 We use]R to denote the cardinality of R.

amounts to proving an isomorphism with Σ-types. Furthermore this proof
of adequacy, together with standard isomorphisms can be used to simplify
proofs as discussed in section 3.

– In section 3.2 we describe how summation functions and isomorphisms can
be used to compute uniform discrete probabilities and reason about proba-
bilistic functions.

– Exploration functions (see section 2) implement big operators as higher-
order functions. These functions can be combined and transformed to achieve
feature-rich explorations in a modular way as discussed in section 4.

– To reason about these big operators we found a new use of the induction
principle for binary trees. This principle gives us a way of lifting properties
from the small operator to the big operator, such as the lifting of homomor-
phisms described above. This is discussed in section 4.2.

– For the sake of conciseness, we display only code fragments in the paper.
However, a self-contained Agda development is available online [8].

Notations: Throughout the paper, our definitions are presented in Agda [7]
notation. With ‹ we denote the type of types. The function space is writ-
ten A → B, while the dependent function space is written (x : A) → B x,
∀ (x : A) → B x, or Π A B. An implicit parameter, can be introduced via
∀{x : A} → B x, and can be omitted at a call site if its value can be uniquely
inferred from the context. There are shortcuts for introducing multiple argu-
ments at once or for omitting a type annotation, as in ∀{A} {i j : A} x → e.
We will use mixfix declarations, such as] , where underscores denote where
arguments go. Agda is strict about whitespace, for instance explore] is a single
identifier because it contains no space.

Core types: As a tool Agda comes with no predefined concepts other than types
and functions, therefore everything has to be defined. In particular there is no
specific sort for propositions: everything is in ‹. We denote the empty type as O
and it is used to represent falsity. The type 1 has one value namely 01 and it is
used to represent trivial truth. The type 2 has two values (02 and 12), and it is
used both to denote a single bit of information and as a Boolean value where 02
denotes false and 12 denotes true. We use the type Fin n which inductively
defines the natural numbers strictly below the natural number n. We mainly use
this type as a representative for finite types with n values. The type ≡ is the
type of propositional equality also called identity type. Agda reserves the usual
equality symbol = for definitions; we apply this convention to our mathematical
statements as well.

A note on Σ-types and type isomorphisms: In type theoryΣ A B is used to denote
a dependent sum (sometimes called a dependent pair). Here A is a type and B

is a dependent type over A (hence B has type A → ‹). These pairs can be built
using the , constructor (, has type (x : A) → B x → Σ A B). Moreover,
pairs come with two projection functions proj1 : Σ A B → A and proj2 : (p :

Σ A B) → B (proj1 p). The type A ∼= B is used to denote isomorphisms between

types A and B: it means there is two functions, one going from A → B and the
other from B → A such that composing them yields the identity function. The
type ∼= is an equivalence relation for types.

2 Big operators, folds and explorations

For some of our examples we use the type for six-sided dice, which is introduced
by the following Agda declaration. This declaration defines a new data type and
thus introduces the type constructor D6 and its data constructors , , , ,

, and : In Agda: data D6 : ‹ where : D6. From the binary
operator + we get the big operator sumD6 by iterating it over all arguments of
the type D6. In Agda: sumD6 f = f + (f + (f + (f + (f + f)))).

All big operators over a type A share a common type, namely (A → U) → U.
For instance summations and products have type (A → N) → N, while dis-
junctions and conjunctions have type (A → 2) → 2.

Definition 1. A big operator for a small operator ⊕ together with default
value ε of type U is a function that, given a body of type A → U for some type
A, will apply some values of A and combine them with the ⊕ operator. If there
are no values to apply, ε is returned. In Agda: BigOp U A = (A → U) → U.

Definition 2. An exploration function for a type A is given a type U, a value ε
of type U, a function ⊕ of type U → U → U, and function f of type A → U.
The exploration function finally yields a result of type U. In Agda:
Explore A = ∀ {U : ‹} (ε : U) (⊕ : U → U → U) → BigOp U A

For any type A, an exploration function is given a default result ε, a bi-
nary operator ⊕ and a function f realising the body of the big operator.
The function f is then called on every value of the type to be explored. All
results are combined with the operator ⊕ . If there are no values to explore
the default result ε is returned. The task of an exploration function is thus to
transform any small operator ⊕ into the corresponding big operator

⊕
of

type (A → U) → U. For instance, if explore is an exploration function for a
type A, then explore 0 + is

∑
and explore 1 * is

∏
.

Finiteness: Given Agda’s type discipline, the type Explore A enforces that any
exploration function will only explore a finite number of values (of type A). This
is enforced by Agda functions being total (strongly normalizing and exhaus-
tively defined) and by parametricity [9, 10]: since the exploration function knows
nothing about the type U it must use what is given to it.

Exhaustivity: Some exploration functions can be defined to explore all the values
of a type A. These exploration functions are then said to be exhaustive. Originally,
the name “exploration” was coined because these functions were designed to
systematically examine every possible value of the type.

List folding as an exploration: A straightforward way to build an exploration
function is to start with a list. Given a list of values to explore, the corresponding
exploration function is not more than a variation of the standard fold on lists.
Using a list is a way to explore a known subset of a type: for instance, one can
explore the even faces of a die with: foldList (:: :: ::[]). If one wants
the exploration to be exhaustive one has to first produce an exhaustive list of
the values of type A. However, lists force a flat structure for the exploration:

foldList : ∀ {A : ‹} → List A → Explore A

foldList [] ε ⊕ f = ε
foldList (x :: xs) ε ⊕ f = f x ⊕ foldList xs ε ⊕ f

Tree folding are explorations too: One way to gain flexibility is to use trees in-
stead of lists. We define below a classic data type for binary trees which follows
the notion of exploration. An exploration function can be seen as the poly-
morphic Church encoding as studied by Böhm and Berarducci [11]. The func-
tion foldTree : ∀ {A} → Tree A → Explore A is straightforward and omitted:

data Tree (A : ‹) : ‹ where empty : Tree A

leaf : A → Tree A

fork : (` r : Tree A) → Tree A

As an example, given a concrete set of elements represented as a binary tree t,
the function foldTree t is an exploration function for these elements. For in-
stance, foldTree (node (leaf 3) (node empty (leaf 1))) 0 + (* 2)
computes to the value (2 * 3) + (0 + (2 * 1)) which finally computes to 8.

Summing, Counting, and Size: Given an exploration function explore on a
type A we can derive multiple operations from it. In particular, exploration func-
tions give us summation functions by using 0 for ε and + for ⊕ . Counting the
values satisfing a predicate is a particular case of summation. The function count

lifts the predicate p : A → 2 to a summation body of type A → N. Addition-
ally, we define size which counts using a trival predicate (the constant function
12). Provided explore is indeed exploring all the values of type A exactly once
then size must be the size of the type A (see lemma 1).

Monoidal explorations: When the small operator, together with the default
value, is equipped with some structure, the resulting big operator has some in-
teresting properties. For instance, most of the interesting small operations form
at least a monoid. This is the case for a many container-like data structures.
Among these data structures we highlight three: binary trees, lists, and options
(Maybe). These enable an exploration to be reified as a data structure. The bi-
nary tree structure reifies exactly the exploration, keeping the original balancing.
The list type corresponds to the free monoid: it yields a flat representation which
is canonical up to monoidal laws. The Maybe type can be used to implement the

retrieval of the first explored value. Combined with filtering this provides a way
to “find” a particular value. These reification functions are the inverses of the
folding functions defined above.

3 Cardinality and Type Isomorphism

3.1 Adequate summations through Type Isomorphisms

Our original motivation for exploration functions was to compute probabilities
by summing an event over all the values of a given type. However, how can we
ensure that we have a correct summation function? We need to ensure that a
summation function is going to count every value exactly once (i.e the summation
function is not allowed to forget a value or over-count it). In order to guarantee
this we use a strong correspondence between the cardinalities of types in type
theory and the act of summing. We use this correspondence as a specification
for the summation functions that fully explores a type. It boils down to the
observation that Σ A F is acting as a big operator for disjoint union of all F x

where x is of type A. Therefore the cardinality of a Σ-type is the summation of
the cardinalities over the type family:] (Fin n) ≡ n and] (Σ A F) ≡

∑
x∈A] (F x).

Using these cardinality relations we can show that sumA a summation func-
tion is correct, assuming a particular type isomorphism exists. Since type iso-
morphisms preserve cardinality, we argue as follows.

sumA f ≡]
(
Fin (sumA f)

)
≡] (Σ A (Fin ◦ f)) ≡

∑
x∈A

] (Fin (f x)) ≡
∑
x∈A

f x

Definition 3. A function sumA for a type A is said to be an adequate sum if for
all functions f there is an isomorphism between Σ A (Fin ◦ f) and Fin (sumA

f). In Agda: AdequateSum sumA = ∀ f → Σ A (Fin ◦ f) ∼= Fin (sumA f).

Using this specification we get a correctness criterion for summation func-
tions and we can use type isomorphisms to derive results about our summation
functions. For instance, summation functions are invariant under isomorphism.

Lemma 1. For an adequate summation function sum over type A, with a derived
size size : N, then it is possible to construct an isomorphism Fin size ∼= A.

Proof. By sum being adequate and the isomorphismΣ A (λ → Fin 1) ∼= A.

Lemma 2. Let A, B be sets2, for all π : A ∼= B and for all C being a type family
over B, it is possible to construct an isomorphism Σ A (C ◦ π) ∼= Σ B C (the
proof is omitted but can be found in our Agda development).

Theorem 1. Given two adequate summation functions sumA and sumB for types
A and B respectively, for all isomorphisms π : A ∼= B and functions f : B → N
the summation sumA (f ◦ π) is equal to the summation sumB f.

2 Set in the sense of homotopy type theory.

Proof. Using adequacy of the summation functions and the lemmas 1 and 2 one
gets an isomorphism thm : Fin (sumA (f ◦ π)) ∼= Fin (sumB f). Since Fin is
injective (i.e Fin m ∼= Fin n → m ≡ n) the proof is complete.

Fin (sumA (f ◦ π)) Fin (sumB f)

Σ A (Fin ◦ f ◦ π) Σ B (Fin ◦ f)

thm

lemma 2

adequacy of sumA adequacy of sumB

Lemma 3. Given two summation functions sumA and sumB for type A and type
B, if both are adequate they satisfy the commutation property that sumA (λ a →
sumB (λ b → f (a , b))) is equal to sumB (λ b → sumA (λ a → f (a , b))).

Proof. By adequacy of sumA and sumB and the following type isomorphism:
(Σ A λ x → Σ B λ y → C x y) ∼= (Σ B λ y → Σ A λ x → C x y).

Counting uniquely: We prove that all values are summed only once when using
an adequate summation function sum.

Theorem 2. Assume for a type A that we have a boolean equality test ==

such that, for all x and y of type A, the type (x == y) ≡ 12 is isomorphic to x

≡ y. Furthermore, assume an adequate summation function sum, from which we
derive a counting function count. Then, for all x, the equation count (λ y →
x == y) ≡ 1 holds.

Proof. Using the fact that sum is an adequate summation function together with
the type isomorphism Σ A (λ y → x ≡ y) ∼= 1.

Adequate explorations for free: If an adequate summation function arises from
an exploration function, we learn that the exploration function has applied each
argument of the type only once. This holds because the type of exploration
functions is polymorphic so an exploration function has no way to cheat and
detect it supposed to count how many times a certain value occurs. This result
holds by parametricity [9, 10] and provides the adequacy of exploration functions.

3.2 Probabilistic functions, deterministically

While a deterministic function is a fixed mapping from elements of a domain A
to elements of a codomain B, a probabilistic function carries out a probabilistic
process to map the elements of A to the elements of B.

This extra capability of a probabilistic function p can be modeled by a de-
terministic function f receiving one extra argument r uniformly drawn from a
set R. The argument r represents the randomness required by the probabilis-
tic process. When the function f is correctly chosen the following holds for all
arguments x and result y: Pr[r ← R;f(x,r) ≡ y] ≡ Pr[p(x) ≡ y].

In this work we focus on a finite random supply R or equivalently a finite
universe of events Ω. With this setting one can reason about uniform discrete
probabilities using exploration functions and isomorphisms. For a probabilistic
function which needs to flip a coin, roll a six-sided die and generate a 128-bits
key, the type R can be any type isomorphic to (2 × D6 × Bits 128).

Theorem 3. Assume an adequate summation function sum over a type R and
let count be the derived counting function. For two events f g : R → 2, such
that f and g have the same probability of occuring i.e count f ≡ count g, it
is possible to construct an isomorphism π : R ∼= R such that f x ≡ g (π x).

Proof. The isomorphism π is the identity for all values x such that f x ≡ g x.
Otherwise π is defined as the isomorphism between Σ R (λ x → f x ≡ 12× g

x ≡ 02) and Σ R (λ x → f x ≡ 02× g x ≡ 12), which is first derived from the
adequacy of sum and that count f ≡ count g.

Corollary 1. Two events f g : R → 2 have the same probability of occurring
if and only if there is an isomorphism π : R ∼= R such that g is equal to f ◦ π.

Proof. Combining theorems 1 and 3.

Corollary 2. Uniform distributions: For any type A and any value x of type A,
the likelihood of a random sample y of type A being equal to x is Pr[x ≡ y] ≡ 1

](A) .

Proof. Follows directly from theorem 2.

This corollary implies that our definition of random sampling corresponds
to a uniform sampling. Uniform distributions are those that attribute the same
probability to all values of the type used as the universe of events. For finite
types this amounts to saying that each value has to be counted exactly once.

Examples of using isomorphisms for summations: When reasoning about prob-
abilities, one establishes the relation between the probabilities of two processes.
A deduction step either approximates (weakens, loosens) this relation or keeps
it unchanged. In the latter case the probability stays the same because of a
symmetry within the space of events. We exploit these symmetries by revealing
isomorphic event spaces.

Examples from cryptography: Internally an encryption scheme often works using
group structures. Assuming an arbitrary group (G , 0 , ⊕ , -), the security
of the system often relies on the fact that, for any x, adding a random value
to x will still appear random. The standard example is one time pad where
encryption is just bitwise XOR of the key and the message. If one can show that
λ x → x ⊕ m is an isomorphism for some m then adding a random value to m

is indistinguishable from random. This indstinguishability is proven by showing
that, for all observers O : G→ N, sum (λ x→ O(x ⊕ m)) is equal to sum (λ x→
O(x)) due to theorem 1. In particular the observer learns nothing of m, which is
why this provides security.

One case where this reasoning is used is when proving the security of a stream
cipher. A stream cipher assumes a pseudo random number generator PRG which
is a probabilistic function that will output random looking data. Compared to
one time pad, the main benefit of a stream cipher is that the size of randomness
required is less than the size of the output. The encryption of a stream cipher is
PRG(key) XOR m where m is the message: one usually argues that this is secure
because PRG(key) is supposed to be indistinguishable from random.

Another example is in the proof of the ElGamal encryption system which
works in a multiplicative group instead. In one part of the proof the adversary
gets a ciphertext c = (gy , gz • m) where both gy and gz can be considered to be
random. Hence the adversary will not learn anything about the message m.

3.3 Cardinality of Π-types

This correspondence can be further extended to products. Π-types can be seen
as the big operator for products. The correctness for product functions can be
defined using correspondence similar to the one for summation functions:

prodA f ≡]
(
Fin(prodA f)

)
≡] (Π A(Fin ◦ f)) ≡

∏
x∈A

] (Fin(f x)) ≡
∏
x∈A

f x

Definition 4. A function prodA for a type A is said to be an adequate product if
for all f there is an isomorphism between Π A (Fin ◦ f) and Fin (prodA f).
In Agda: AdequateProduct prodA = ∀ f → Π A (Fin ◦ f) ∼= Fin (prodA f).

However, this definition asks for an isomorphism with a function space, and
these can sometimes be difficult to establish without functional extensionality.
Such difficulties are evident in simple examples, like trying to construct the
isomorphism Π 2 B ∼= B 02 × B 12 where B is a dependent family over 2.

One promising solution to the problem of functional extensionality in a con-
structive setting is homotopy type theory [6] which has generated much interest
in recent years. This theory includes the univalence axiom, which states that
homotopy equivalence of types is homotopically equivalent to identity of types:
as a consequence we get that equality of functions is extensional equality. We
will for the rest of this section assume we are working in a setting with functional
extensionality like homotopy type theory.

Theorem 4. Let prodA be an adequate product function for the type A. Let
sumAB be an adequate summation function for a type Π A B. Finally let sumB

be a family over A of summation functions on the type B. Then for all func-
tion f : (x : A) → B x → N, prodA (λ x → sumB x (λ y → f x y)) is
equal to sumAB (λ g → prodA (λ x → f x (g x))).

Proof. Using the adequacy properties together with the type isomorphism
Π A (λ x → Σ (B x) λ y → C x y) ∼= Σ (Π A B) λ f → Π A λ x → C x (f x)
(the forward direction is usually known as the dependent axiom of choice).

4 Working with exploration functions

Exploration functions can be obtained by folding over data structures such as
lists or trees. However, one can also define exploration functions directly. This
corresponds to the polymorphic encoding for binary trees. In this section we
show how to build, combine, transform, and reason directly about these. Below
exploreD6 is an example of an exploration function for D6 defined directly.

exploreD6 : Explore D6

exploreD6 ε ⊕ f = f ⊕ (f ⊕ (f ⊕ (f ⊕ (f ⊕ f))))

Building exploration functions: In order to easily define new exploration func-
tions we provide three building blocks inspired by binary trees. These three com-
binators are defined for any type A and correspond to the constructors empty,
leaf, and fork. The function empty-explore is an exploration function which
does not explore anything and just returns the default value ε. The function
point-explore takes a value x of type A and defines an exploration function
which explores only this point x using the given exploration body. Finally the
function merge-explore takes two exploration functions and combines them
using the received binary operator ⊕ .

For exhaustively exploring finite types, however, we have more specialised
combinators. Generally, finite types are a combination of sums and products,
therefore exploration combinators are provided for those. As base cases we have
exploration functions for types such as O, 1 and 2. For sum types A] B, the
exploration explore] expA expB ε ⊕ f combines the two results given by
exploring the function f specialised to types A and B using inj1 and inj2 — the
injections for the type] . The two results are then combined using ⊕ . For
Cartesian products A × B, the exploration explore× expA expB ε ⊕ f nests
the exploration of B into the function exploring A. Note how this combinator is
independent of the operator ⊕ . Finally explore× is generalised to Σ-types
(dependent sums) by exploreΣ. Intuitively, we take the following equation on
summations as our definition for exploration of product types:∑

x,y∈A×B
f(x,y) ≡

∑
x∈A

∑
y∈B

f(x,y)

Exploration functions for exploring functions: While we found no way to directly
explore functions themselves (such as Explore (A → B)) there is an attractive
workaround: one can use isomorphisms on functions to incrementally build such
an exploration function. Mainly one decomposes the domain with isomorphisms
towards simpler types we can explore:

(A] B) → C ∼= (A → C)× (B → C) (A× B) → C ∼= A → (B → C)

These isomorphisms require functional extensionality, making this one more
case where homotopy type theory can help. While not required to define the
exploration functions themselves, the proofs of these isomorphisms are required
to prove their adequacy.

4.1 Exploration transformers

In this section we describe a series of transformations on exploration functions.
These tools provide ways to enhance explorations in a modular way.

We start with an example which highlights how exploration functions may
be used as a programming tool in rather than a reasoning tool. A prototypical
program involving an exploration function in the cryptography setting is the
brute force exhaustive search. This could be the search for a key such that the
message successfully decrypts to a meaningful message. Sometimes the message
space is relatively small and searching it can be used to gather information, for
example inverting hashing functions. Here let us suppose a type for messages Msg
together with an exploration function exploreM, a type for digests Digest to-
gether with an equality test (== has type Digest → Digest → 2), and a
function H : Msg → Digest. In practice one might think of the function H as
being hard to inverse. The following program inverts H by exploring all possible
messages, and returning the list of all messages which maps to the input digest:

H-1-list : Digest → List Msg

H-1-list d = exploreM [] ++ λ m → if H m == d then [m] else []

In order to prove probabilistic results about an attacker like H-1-list the
reasoning might involve the relation between two nested explorations. The outer
exploration counts the probabilities and the inner one is a brute force search over
all messages. The properties which underlie our exploration functions provide a
solid basis for this form of reasoning. While straightforward, the exploration
in H-1-list shows a lack of modularity: indeed the choice of producing a list of
the messages is entangled with the filtering.

Explorations can be chained in such a way that each explored value of type A

can yield a nested exploration on a type B. The resulting exploration aggregates
all the spawned explorations and yields results of type B:

>>= : Explore A → (A → Explore B) → Explore B

(expA >>= expB) ε • f = expA ε • λ x → expB x ε • f

Explorations are monadic: The suggestive name (>>=) highlights that Explore
forms a monad, where point-explore plays the unit (or return). This monadic
structure comes as no surprise once we realise that the type BigOp U is the
continuation monad.

The function gfilter-explore (for generic filter) discards undesirable val-
ues and also selects what parts to retain from the desirable ones. Using >>=

filtering is nicely expressed, by chaining the exploration on the type A with
either empty-explore or point-explore depending on the explored value x.
By lifting the given function f to a predicate the function filter-explore

uses gfilter-explore.

gfilter-explore : (f : A → Maybe B) → Explore A → Explore B

filter-explore : (p : A → 2) → Explore A → Explore A

The previous example inverting a function H can built using filter-explore

(λ m → H m == d) the result is an exploration from which on can get a list, or
the first matching values.

A rather trivial exploration transformer is explore-backward, which flips
the arguments of the given small operator. With this function we emphasis how
monoid transformers (such as flip) yield exploration transformers.

explore-backward : Explore A → Explore A

explore-backward eA ε • = eA ε (flip •)

As a last transformer we consider the monoid of endomorphisms featuring
the identity function as the neutral element and function composition as the
multiplication operation. Exploring with the monoid of endomorphisms expects
a function body that will turn values of type A into functions of type U → U. The
body composes the original small operator op with the original body f. We fi-
nally pass in the default value ε to the resulting big composition. When (ε, •)
is a monoid, this transformation computes to the same result as the original ex-
ploration. Its utility lies in the fact that function composition has an associative
computational content which will force all the calls to • to be associated to
the right, finally ending with a single ε. This technique, known as difference
lists, (has been used before and) is part of the standard toolbox of functional
programmers. Its original motivation was to improve the performance, but it
is also useful for reasoning since it gives associativity for free. Notice that this
technique is nicely captured by the following exploration transformer:

explore-endo : Explore A → Explore A

explore-endo eA ε op f = eA id ◦ (op ◦ f) ε

4.2 Exploration Principle

We build the reasoning principle of exploration functions on top of binary tree
induction, so we first review binary tree induction. As with any induction prin-
ciple, the desired property P, must be proved for the base cases, namely empty

and leaf x here. The property P must then be preserved by the recursive struc-
ture, namely node here.

Definition 5. The exploration principle states that any property P on explo-
ration functions holds if P holds for empty-explore; if P holds for all points
(using point-explore); and if P is preserved by merge-explore. In Agda:

ExplorePrinciple : ∀ {A} → Explore A → ‹

ExplorePrinciple {A} exp =

∀ (P : Explore A → ‹) (εP : P empty-explore)
(⊕P : ∀ {e0 e1} → P e0 → P e1 → P (merge-explore e0 e1))
(fP : ∀ x → P (point-explore x)) → P exp

Proper exploration functions comes with the principle defined above. This
principle is the induction principle on binary trees where empty, node, and leaf,
respectively become empty-explore, merge-explore and point-explore. Put
differently, this property enforces that an exploration function is essentially a
binary tree where empty trees are ε, nodes are calls to ⊕ , and leaves are calls
to f. This principle alone implies most of the properties which are expected from
big operators (apart from the unique counting property of theorem 2).

Moreover, while the type of the principle (i.e. ExplorePrinciple) looks a bit
daunting, it is a simple mechanical process to prove it: one mimics what happens
in the underlying exploration function. Below is the actual Agda proof term of
this principle for our exploreD6 function. Thanks to implicit parameters the
proof term exploreD6P is almost like exploreD6:

exploreD6P : ExplorePrinciple exploreD6

exploreD6P P εP ⊕P fP

= fP ⊕P (fP ⊕P (fP ⊕P (fP ⊕P (fP ⊕P fP))))

We conjecture the principle to be provable for each well typed exploration
function, following a parametricity result. However this seems to require a slightly
stronger variant of free theorems [9] than those proposed by Bernardy et al. [10].

Properties of exploration functions: We have proved some properties inspired by
measure theory. These properties are immediate consequences from the explo-
ration principle and properties of the small operator. Examples of such properties
are: the exploration is homomorphic provided that the operation is associative
and commutative; linearity requires that the operation · distributes over ⊕ ;
extensionality holds unconditionally; and monotonicity requires that the opera-
tion is monotonic with respect to a preorder ≤ .

As highlighted in the introduction, a more advanced property connects the
exploration of two different operations. The property lift-hom lifts an homo-
morphism to its big operator counterpart. Let ⊕ and ⊗ be respectively +

and * on N, f be an exponential function x 7→ bx for some base b, then the
following equation holds:

∀g ∈ (A→ N), b
∑

x∈A g(x) ≡
∏
x∈A

bg(x)

Given these same properties one can also derive the rule of addition for
probabilities. The property proved in Agda follows from this equation:

] (P) +] (Q) ≡] (P ∪Q) +] (P ∩Q)

5 Discussion

5.1 Related work

The Big Operators theory in Isabelle: Another development of big operators
can be found in Isabelle [12]. This library uses an axiomatization of finite sets
and a fold function operating on these sets. Since Isabelle/HOL is based on
classical logic, the fold function are, in contrast to our exploration functions, not
constructive. Because of this we can’t directly use the results from this library.

Canonical big operators: The work on the bigops library [2] for Coq have a
similar purpose as our exploration functions. This library focuses on the prop-
erties one can derive about folds over lists. These folds also allow one to filter
out undesired values:

reduceBig : ∀ {U A : ‹}(⊕ : U → U → U)(ε : U)(` : List A)
(p : A → 2)(f : A → U) → U

reduceBig ⊕ ε ` p f =

foldr (λ i x → if p i then f i ⊕ x else x) ε `

By rearranging the types to put the predicate and the list as the first argu-
ment we can see that this is indeed a way to construct an exploration function,
(although we abstract out the filtering using filter-explore from section 4.1).
Another way of defining reduceBig would be reduceBig p ` = filter-explore

p (foldList `).
But foldList is not the only way of constructing exploration functions: we

have a choice and, as such, can pick one that has better reduction behaviour.
Take as a motivating example the list corresponding to explore]. This con-
struction depends on two list functions, map and ++ , both of which might
hinder reduction.

combine-] : ∀ {A B : ‹} → List A → List B → List (A] B)
combine-] xs ys = map inj1 xs ++ map inj2 ys

The issue regarding the reduction is that reduceBig ⊕ ε (xs ++ ys) p f

will not be definitionally equal to reduceBig . . . xs. . . ⊕ reduceBig . . . ys. . .
when xs is a neutral term. A similar problem occurs when using a map as in
reduceBig ⊕ ε (map g xs) p f which will not be definitionally equal to
reduceBig ⊕ ε xs (p ◦ g) (f ◦ g). When defining the exploration functions
directly, this reduction is the definition so one are saved from having to work
with propositional equality proofs.

In bigops [2], the type finType is characterised by a list together with a
proof that, for all element x of that list, x occurs only once i.e. count (== x)
xs ≡ 1. Theorem 2 states that every adequate exploration satisfies this criterion.

The Alea library: The Coq library Alea [13] is used to reason about probabil-
ities. Instead of summations they extract measures from a monad called Distr.
The measure is extracted with the function µ : Distr A → (A → [0,1]) →m

[0,1]. Here [0,1] represents the real numbers between 0.0 and 1.0, and →m

represents monotonic functions. For a µ function to be a probability distribution
it needs to be a linear continuous operation. The type [0,1] had to be partly
axiomatised and as such is not fully computable.

Since we can also sample over finite types in Alea, we can embed proba-
bilistic functions from our system to the Alea monad (Distr). To do so we
use the underlying deterministic function. For instance, consider f : R → 2.
Once embedded in Alea, we conjecture that the following relation between the
probability distribution and our summation functions sumR f holds3:

embed : (R → 2) → Distr 2

embed f = do r ← randR; return (f r)
embedding : ∀ f → µ (embed f) 2B[0,1] ≡ sumR f / #R

5.2 Future work

Big operators over types: Intuitively Σ is the big operator for] , can we, for
a type A, find an exploration function expA such that expA O] F ∼= Σ A F?
Such an exploration function would lay down all the “paths” to the values in
the type A. Each of these paths lead to an associated leaf F which depends on
the corresponding A value. We conjucture that it is enough to be an adequate
exploration function for this to be true.

Higher inductive types: When looking at big operators we usually do not consider
the order the elements are applied in to be of importance. This is reflected in
the set-theoretical syntax

⊕
x∈A f(x) that we have used so far. However, nothing

prevents us from folding over a non-commutative and non-assocative operator.
The tree type described in section 2 allows us to distinguish based on the order
of elements. To remedy this one can instead use a higher inductive type [14]. The
inductive type of binary trees (Tree) can be upgraded to a higher inductive type
(CTree) where the laws for commutative monoids are added as extra equalities.
This type CTree corresponds to the free commutative monoid. We conjecture
that the induction on the type CTree corresponds to a refienment of exploration
functions where the operator enjoys a commutative monoid structure.

3 We silently coerce →m to → and 2B[0,1] is measuring the likelihood of getting 12

5.3 Conclusion

This work presents a way to reason formally about big operators. We define
exploration functions using a polymorphic encoding of binary trees, which of-
fer greater modularity. Reusing the induction principle of binary trees, we are
able to easily lift properties from small operators to big operators. Some explo-
ration functions can be shown to adequate, namely each value is applied exactly
once, thanks to the cardinality of Σ-types being a sum of cardinalities. We show
how to model probabilistic functions directly into type theory. For finite types
we use a computational meaning for the probabilities that simplifies the proofs
since probabilistic equivalences can be given as isomorphisms between the corre-
sponding Σ-types without involving numbers. Furthermore we made a persistent
usage of type isomorphisms to make our results simpler and more general.

References

1. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/hol: A proof assistant for higher-
order logic (2002)

2. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In
Mohamed, O., Muñoz, C., Tahar, S., eds.: Theorem Proving in Higher Order Logics.
Volume 5170 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2008) 86–101

3. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project. (2004) Version 8.0.

4. Martin-Löf, P.: An intuitionistic theory of types: Predicative part. In Rose, H.,
Shepherdson, J., eds.: Proceedings of the Logic Colloquium ’73. Volume 80 of
Studies in Logic and the Foundations of Mathematics. (1975)

5. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2-3)
(February 1988) 95–120

6. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Founda-
tions of Mathematics. (August 2013)

7. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden (September 2007)

8. Gustafsson, D., Pouillard, N.: crypto-agda (2012-2014) https://github.com/crypto-
agda/crypto-agda.

9. Wadler, P.: Theorems for free! In: Conference on Functional Programming Lan-
guages and Computer Architecture (FPCA). (September 1989) 347–359

10. Bernardy, J.P., Jansson, P., Paterson, R.: Parametricity and dependent types. In:
Proceedings of the 15th ACM SIGPLAN international conference on Functional
programming. ICFP ’10, New York, NY, USA, ACM (2010) 345–356

11. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theor. Comput. Sci. 39 (1985) 135–154

12. Nipkow, T., Paulson, L.C., Wenzel, M.: Theory big operators
http://isabelle.in.tum.de/library/HOL/Big Operators.html.

13. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in coq. Science
of Computer Programming 74(8) (2009) 568 – 589

14. Lumsdaine, P., Shulman, M.: Higher inductive types. (2013) In preparation.

A Agda development, selected parts

A.1 Fold over binary trees

{- Fold over binary trees: -}
foldTree : ∀ {A} → Tree A → Explore A

foldTree empty = empty-explore

foldTree (leaf x) = point-explore x

foldTree (fork ` r) = merge-explore (foldTree `) (foldTree r)

A.2 Reifications

tree : Tree A

tree = exploreA empty fork leaf

list : List A

list = exploreA List.[] List. ++ List.[]

first : Maybe A

first = exploreA nothing | |? just

where

| |? : Maybe A → Maybe A → Maybe A

nothing | |? my = my

(just x) | |? = just x

A.3 Derived big operators

module Explorable {A}(exploreA : Explore A) where

sum : (A → N) → N
sum = exploreA 0 +

count : (A → 2) → N
count f = sum (2BN ◦ f) -- 2BN converts 2 into N

size : N
size = count (const 12)

product : (A → N) → N
product = exploreA 1 *

A.4 Listing of Type Isomorphisms

((× , 1) , (] , O)) is a commutative semiring up to isomorphism.

Fin-inj : Fin m ∼= Fin n → m ≡ n

Fin-0-O : Fin 0 ∼= O

Fin-1-1 : 1 ∼= 1

Fin-2-2 : 2 ∼= 2

Fin-+-] : Fin (m + n) ∼= Fin m] Fin n

Fin-*-× : Fin (m * n) ∼= Fin m × Fin n

Fin-Σ : Fin (sumA f) ∼= Σ A (Fin ◦ f)
Fin-Π : Fin (prodA f) ∼= Π A (Fin ◦ f)

Σ-1 : Σ 1 F ∼= F 01
Σ-2 : Σ 2 F ∼= F 02] F 12
Σ-] : Σ (A] B) F ∼= Σ A (F ◦ inj1)] Σ B (F ◦ inj2)
Σ-Σ : Σ (Σ A B) F ∼= Σ A (λ a → Σ (B a) (λ b → F (a , b)))
Σ-≡ : (x : A) → Σ A (≡ x) ∼= 1

Σ-fst : (π : A ∼= B) → Σ A (F ◦ π) ∼= Σ B F

Σ-snd : ((x : A) → B x ∼= C x) → Σ A B ∼= Σ A C

Σ-swp : Σ A λ x → Σ B λ y → C x y ∼= Σ B λ y → Σ A λ x → C x y

Π-O : Π O A ∼= 1

Π-1 : Π 1 A ∼= A 01
Π-2 : Π 2 A ∼= A 02 × A 12
Π-] : Π (A] B) C ∼= Π A (C ◦ inj1) × Π B (C ◦ inj2)
Π-Σ : Π (Σ A B) C ∼= (x : A) (y : B x) → C (x , y)
Π-swp : Π A λ x → Π B λ y → C x y ∼= Π B λ y → Π A λ x → C x y

dep-AC : (x : A) → Σ (B x) λ y → C x y
∼= Σ (Π A B) λ f → (x : A) → C x (f x)

A.5 Exploration functions

BigOp : ‹ → ‹ → ‹

BigOp U A = (A → U) → U

Explore : ‹ → ‹

Explore A = ∀ {U : ‹} (ε : U) (⊕ : U → U → U) → BigOp U A

empty-explore : ∀ {A} → Explore A

empty-explore x ε ⊕ f = ε

point-explore : ∀ {A} → A → Explore A

point-explore x ε ⊕ f = f x

merge-explore : ∀ {A} → Explore A → Explore A → Explore A

merge-explore e0 e1 ε ⊕ f = (e0 ε ⊕ f) ⊕ (e1 ε ⊕ f)

explore] : ∀ {A B} → Explore A → Explore B → Explore (A] B)
explore] eA eB ε ⊕ f = (eA ε ⊕ (f ◦ inj1)) ⊕ (eB ε ⊕ (f ◦ inj2))

explore× : ∀ {A B} → Explore A → Explore B → Explore (A × B)
explore× eA eB ε ⊕ f = eA ε ⊕ (λ a → eB ε ⊕ (λ b → f (a , b)))

exploreΣ : ∀ {A} {B : A → ‹} → Explore A → (∀ {a} → Explore (B a))
→ Explore (Σ A B)

exploreΣ eA eB ε ⊕ f = eA ε ⊕ (λ a → eB {a} ε ⊕ (λ b → f (a , b)))

A.6 Some properties derived from the exploration principle

module DerivedProperties {A} (exp : Explore A) (ep : ExplorePrinciple exp)
ε ⊕ ι ⊗ · ≤ f g where

big-⊕ = exp ε ⊕
big-⊗ = exp ι ⊗

homomorphic : CommutativeMonoid ε ⊕ →
big-⊕ (λ x → f x ⊕ g x) ≡ big-⊕ f ⊕ big-⊕ g

extensional : (∀ x → f x ≡ g x) → big-⊕ f ≡ big-⊕ g

monotonic : Monotonic ⊕ ≤ → (∀ x → f x ≤ g x) →
ε ≤ ε → big-⊕ f ≤ big-⊕ g

linear : (∀ k → k · ε ≡ ε) →
(∀ k x y → k · (x ⊕ y) ≡ k · x ⊕ k · y) →
∀ k → big-⊕ (λ x → k · f x) ≡ k · big-⊕ f

lift-hom : (f ι ≡ ε) → (∀ x y → f (x ⊕ y) ≡ f x ⊗ f y) →
f (big-⊕ g) ≡ big-⊗ (f ◦ g)

A.7 Exploration transformers

gfilter-explore : (A → Maybe B) → Explore A → Explore B

gfilter-explore f eA = eA >>= λ x → case (f x) of λ
{ nothing → empty-explore

; (just y) → point-explore y }

filter-explore : (A → 2) → Explore A → Explore A

filter-explore = gfilter-explore λ x → [0: nothing

1: just x] (p x)

A.8 Binary tree induction

{- Fold over binary trees: -}
foldTree : ∀ {A} → Tree A → Explore A

foldTree empty = empty-explore

foldTree (leaf x) = point-explore x

foldTree (fork ` r) = merge-explore (foldTree `) (foldTree r)

{- Induction over binary trees: -}
binTree-ind : ∀ {A} (t : Tree A)

(P : Tree A → ‹)
(εP : P empty)
(⊕P : ∀ {t0 t1} → P t0 → P t1 → P (node t0 t1))
(fP : ∀ x → P (leaf x)) → P t

binTree-ind empty P εP ⊕P fP = εP

binTree-ind (leaf x) P εP ⊕P fP = fP x

binTree-ind (fork ` r) P εP ⊕P fP = ⊕P (binTree-ind ` P εP ⊕P fP)
(binTree-ind r P εP ⊕P fP)

A.9 Higher inductive type for binary trees with commutative
monoidal structure, in a fictional version of Agda:

data CTree (A : ‹) : ‹ where

empty : CTree A

leaf : A → CTree A

node : (` r : CTree A) → CTree A

comm : ∀ x y → node x y ≡ node y x

assoc : ∀ x y z → node (node x y) z ≡ node x (node y z)
neutral : ∀ x → node empty x ≡ x

