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Abstract
Programming correct and precise communicating systems remains
a challenging and error-prone venture. Still, communicating sys-
tems are not only used in practice everyday but also as a device
for game based proofs such as security notions. We present a shal-
low embedding of protocols within the dependent type theory of
Agda, enabling mechanized formal reasoning of processes follow-
ing precise protocols. Using this shallow embedding we reconstruct
the connectives from linear logic, and provide an elegant reasoning
tool for communicating systems, all within a purely functional de-
pendently typed programming language.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]

Keywords (Homotopy) Type Theory, Functional Programming
Languages, Dependent Types, Mechanized Reasoning, Session
Types, Protocols, Linear Logic

1. Introduction
We present a shallow embedding of protocols within the dependent
type theory of AGDA, enabling mechanized formal reasoning of
processes following precise protocols.

A warm-up example: The Diffie-Hellman key exchange protocol
is a well established protocol introduced by Whitfield Diffie and
Martin Hellman (Diffie and Hellman 1976). It is one of the first
constructions of public key cryptography. The core ideas behind
this protocol are still in use today. In this setting Alice wants to
agree with Bob on a common shared secret. This secret can later
be used as a key to secure their communication. They both already
agreed on the protocol to follow to reach this goal. The protocol
relies on the use of a group structure G. The choice of the group
is crucial for the security of the protocol but the correctness only
relies on its structure. G is a multiplicative group of order q with a
generator g, meaning that elements of G can be written as gx for
some x in Zq (the additive group of integers modulo q).

Alice starts by picking a random value x in Zq and sends gx to
Bob. Bob also picks a random value y in Zq and receives gx. He
responds to Alice by sending gy . They now both can agree on the
common value gxy , Alice can raise the received gy to the x and
Bob can raise the received gx to the y. The laws of exponentiation
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ensure that they agree on a common value. In this example let us
assume that Alice is then sending this value gxy .

In our system the protocol for Alice can be described as follows:

send λ (gx : G ) →
recv λ (gy : G ) →
send λ (gx y : G ) →
end

We shall give the details of these protocols in section 2 but note
that gx , gy , and gx y are unused bound variables. This protocol
serves as a type for Alice’s behavior. As a type it already rules
out errors such as a wrong order of communication or ill-typed
messages. However this protocol says nothing about the precise
values for these group elements and the relations between the
messages. A more precise protocol for Alice is the following:

send λ (x : � Zq ) →
send λ (gx : S〈 g ^ x 〉) →
recv λ (y : � Zq ) →
recv λ (gy : S〈 g ^ y 〉) →
send λ (gx y : S〈 g ^(x * y ) 〉) →
end

This updated version of Alice behavior is more precise: she
first has to “send” her secret value x but the � tells that this is a
phantom message. These phantom messages are not really sent and
thus reveal no dynamic information, however they can be used to
precisely describe the remainder of the protocol. She then has to
send a real message which given its singleton type has to be equal
to g ^ x. She then receives from Bob the corresponding phantom
secret y and real value gy . The type of gy ensures that if Bob
follows the protocol then gy is equal to g ^ y. Finally, Alice can
show that she knows the value of g ^(x * y ). As previously she
sends the secret as her last message.

Bob can be given a similar protocol which is derived from the
one for Alice. Indeed for the communication to go well the protocol
for Alice and Bob have to match up. As long as they have match-
ing protocols we can show that well typed participants can always
communicate and finish the protocol. Two processes communicat-
ing using a common protocol can be seen as a combined process
which only sends the messages being exchanged, namely the tran-
script. We shall see how these protocols can be used to extract the
type of such a transcript.

We shall also consider more advanced protocols. Suppose that
Charlie can read the transcript from Alice and Bob. However since
Charlie cannot guess the secret by himself he is concurrently com-
municating with Eve following a different protocol. Eve is assumed
to be capable of breaking a game known as IND-CPA. Charlie can
then break a supposedly hard problem with the help of Eve. This
form of concurrent interaction along multiple protocols is used in
cryptography. We elaborate on this example in section 3.4.



As a separate extension we shall consider protocols synchroniz-
ing multiple participants at the same time. For instance Alice, Bob,
and Dan wants to agree on a common secret. In section 4, the ex-
tension to three participants of Diffie-Hellman key exchange will
be shown as an example of multiparty protocols.

Contributions:

• We present an exploration of the consequences of using (only)
type theory quantifiers (Σ-types for sending, Π-types for receiv-
ing) as the types for communication.

• What is the result of communication? Our answer is that when a
sender meets a receiver they can communicate and then appear
as a sender. A sender being a Σ-type, the result of a communi-
cation is a transcript of the exchanged messages.

• We express processes communicating on multiple channels as
a single channel communication. As a result in section 3 we
obtain a shallow embedding of the additive and multiplicative
fragment from linear logic.

• Put together in section 3.4 we express: games from security
notions; simulators between these games; proofs about these
simulators.

• In section 4 we scale to multiparty protocols (still using sequen-
tial protocols). Our solution is twofold: first we describe the
whole protocol at once and provide projections for any subsets
of the participants; second we can still keep a form of dependent
protocols through the use of broadcast and phantom messages
(shape-polymorphism, � A).

• The full AGDA development is available online (Gustafsson and
Pouillard 2014).

Notations: Throughout the paper, our definitions are presented
in AGDA (Norell 2007) notation. With ‹ we denote the type of
types. The function space is written A → B, while the dependent
function space is written (x : A ) → B x, ∀ (x : A ) → B x,
or Π A B. An implicit parameter, can be introduced via ∀{x : A}
→ B x, and can be omitted at a call site if its value can be
uniquely inferred from the context. There are shortcuts for intro-
ducing multiple arguments at once or for omitting a type annota-
tion, as in ∀{A} {i j : A} x → e. We will use mixfix decla-
rations, such as ] , where underscores denote where arguments
go. AGDA is strict about whitespace, for instance gx y or p≤q are
single identifiers because they contain no space.

Core types: As a tool AGDA comes with no predefined concepts
other than types and functions: everything else must therefore be
defined. In particular, there is no specific sort for propositions:
everything is in ‹. We denote the empty type asO and it is used to
represent falsity. The type 1, has one value namely 01 , and it is used
to represent trivial truth. The type 2 has two values (02 and 12 ), and
it is used both to denote a single bit of information and as a Boolean
value where 02 denotes false and 12 denotes true. The type ≡
is the type of propositional equality, also called the identity type.
AGDA reserves the usual equality symbol = for definitions; we
apply this convention to our mathematical statements as well.

A note on Σ-types and Equivalences: In type theory Σ A B is
used to denote a dependent sum (sometimes called a dependent
pair). Here A is a type and B is a dependent type over A (hence
B has type A → ‹). These pairs can be built using the , con-
structor which has the type (x : A ) → B x → Σ A B. More-
over, pairs come with two projection functions fst : Σ A B → A
and snd : (p : Σ A B )→ B (fst p ). The type A ' B is used to
denote equivalences between types A and B: it means there are two
functions, one going from A → B and the other from B → A such

that composing them either way yields the identity function. The
type ' is an equivalence relation for types.

Shape-Polymorphism and Singleton Types: In this paper we will
use an experimental modality available in AGDA. This modality is
introduced by ..(x : A ) → B in AGDA but we wrap it as a data
type called� : ‹ → ‹. It is similar but different from the proof
irrelevance modality. Terms can safely be erased before run-time,
however they still matter for type checking. This means that it is
not possible to pattern match on a value of type � A, since at run-
time there might be nothing to pattern match against. This type, is
useful for situations where a term is needed in order to type-check
another expression, but is not used in the program. Throughout the
paper we will silently convert to the type � to reduce clutter. We
use this in conjunction with a singleton type S〈 〉 : � A → ‹,
which has one constructor, namely S[ ] : (x : A ) → S〈 x 〉.
There is only one value of the type S〈 v 〉 namely v but with the
singleton type this value now becomes available for inspection.

2. Protocols as dependent types
2.1 Protocols, Processes, and Communication
To assign types to a communication we first focus on typing each
participant individually. We define protocols as a type, namely
Proto0 (the subscript, 0 , can be disregarded for the moment).
This type describes the type of messages to be sent and received
by one participant. When there is nothing left to send or receive
the protocol ends. The protocols we describe are solely made of
send and receive actions. However after a communication (send
or receive), the protocol can use the communicated message to
determine how the protocol unfolds. This notion of dependency
makes direct use of the type formers for dependent types, namely
Π-types and Σ-types. For now, protocols are either end or an
action send′ or recv′ together with the type of the message and
the remaining protocol. We shall see the generalized definition
of Proto0 soon but first here are two protocols:

P0 P1 : Proto0
P0 = recv′ N (recv′ N (send′ N end ) )
P1 = send′ N (send′ N (recv′ N end ) )

The protocol P0 (respectively P1 ) is a type for processes re-
ceiving (respectively sending) two natural numbers, then sending
(respectively receiving) a natural number, and finally ending. Two
processes t0 and t1 obeying protocols P0 and P1 respectively can
be made to communicate with each other. For example t0 could be
sending the sum or the product of two received numbers. The com-
munication will not get stuck since the two protocols P0 and P1 are
opposite or dual protocols. In short, to achieve two-party communi-
cation for any protocol, we put together any two processes obeying
a protocol and its dual.

What are the possible pure behaviors of a participant? For P0 a
participant is going to receive two natural numbers and send back
a natural number. Can this participant be described by a mapping
from the type (N× N ) to N? An equivalent type is obtained by
decoding the action recv′ A B to A → B, send′ A B to A × B,
and end to End (a custom unit type equivalent to 1whose construc-
tor is end as well). This decoding is called J K and it maps proto-
cols to AGDA types. For instance J P0 K ≡ N→ (N→ (N×End ) )
and J P1 K ≡ N× (N× (N → End ) ). A process of type J P0 K
can be defined as: t0 = λ m n → (m + n , end ). From a type
theory standpoint, J K is defined using a so-called “large elimina-
tion”, which means that it is a function that computes a type. In
short, a receiver is a function of the received value, and a sender is
a pair whose first component is the value to send.



Why restrain ourselves to pure behaviors? First, termination is
critical to get the total correctness results we are looking for. Sec-
ond, while pure, these processes can still carry state through the
steps of the protocol. Third, this is enough flexibility to model our
games and adversaries. Finally, most effects can be handled through
the use of communication to special processes which actually per-
form these effects.

Serialization: We want to stress that we are not addressing how
the communication should take place in a distributed setting. For
instance we do not explain how the messages should be encoded
and serialized. Moreover we assume a well-typed setting where the
processes would all be well-typed under consistent assumptions.
We will use the fact that one can “send”/“receive” functions and
types. This is because we focus on a notion of local communication
that we are going to describe within our language. Our goal is
to reason about these protocols and processes. Later on we shall
describe what kind of reasoning we have about processes but we
will mainly speak about the messages which have been exchanged
by two processes following a protocol P.

Channels: We have no explicit channels. Channels would en-
able a much richer topology for communication between processes.
Channels were not necessary to model the protocols and processes
used in the games arising from the game based security notion.
Moreover typing the use of these channels usually requires a form
of linearity. Indeed, every time a process sends or receives on a
channel, the type of this channel has to make one step through the
protocol. In section 3 we describe concurrent protocols; a process
can then follow two protocols concurrently and this is akin to hav-
ing access to two channels. When composing these “2-channels”
processes this can be thought of as putting these processes in par-
allel connecting each other by one shared channel.

Concurrency: The protocols we propose are completely sequen-
tial and therefore involve no concurrency, which means we have
neither race conditions nor deadlocks. In section 3 we introduce a
way to combine protocols to emulate concurrency.

The type of dependent protocols: We aim at a richer notion of
protocols while keeping the simplicity of send and receive. Similar
to how dependent type theory generalizes the notion of functions
and pairs, i.e. Π-types and Σ-types, we will generalize the protocols
to dependent protocols. Without further ado here is the definition
for protocols and their decoding as types:

data Proto0 : ‹1 where
end : Proto0
send : {M : ‹0}(P : M → Proto0 ) → Proto0
recv : {M : ‹0}(P : M → Proto0 ) → Proto0

J K : Proto0 → ‹0

J end K = End
J send {M} P K = Σ M (λ m → J P m K )
J recv {M} P K = Π M (λ m → J P m K )

The data type definition above introduces four constants, namely
Proto0 , end, send, and recv. The function J K maps end to the
unit type End, maps send to a Σ-type, and maps recv to a Π-type.
Because of the quantification on message types, the type Proto0
is actually of type ‹1 and not ‹0 (we shall return to this shortly).
The constructor send generalizes send′ and is used for sending,
while recv generalizes recv′ and is used for receiving. The ac-
tions send and recv take the type M as an implicit argument, as
it usually looks nicer to annotate the variable at its introduction.
These protocols are richer as the next steps of a protocol might

depend on the value of the sent or received message. We shall use
these dependencies soon, but first we recover send′ and recv′.

send′ recv′ : (M : ‹ )(P : Proto0 ) → Proto0
send′ M P = send λ ( : M ) → P
recv′ M P = recv λ ( : M ) → P

The type M → Proto0 is about computation: Observe that the
continuations M → Proto0 in both send and recv can potentially
analyze the message of type M to compute the remainder of the pro-
tocol. This is not ‘higher-order abstract syntax’ used in the Logical
Framework (Harper et al. 1993) as here the → denotes the full
computational function space. The rest of this section gives more
examples as why we want the type M → Proto0 to potentially
permit any function. The type Proto0 is not a syntax isolated from
the type theory and its λ-calculus.

Sinks and Sources: We call a sink (respectively a source) a pro-
tocol only made of recv actions (respectively send actions). Sinks
receive data without sending anything back, at least not through
the same “channel”. Sources only send data. Pure sinks have no
observable value. Intuitively, since the type A → 1 is equivalent
to 1, the same applies to sinks.

Dual and log: For any protocol we define its dual and its source.
Dualizing amounts to exchanging the send and recv actions in a
protocol. The source-of function returns the source of a protocol
by replacing all the recv actions by send actions. The sink-of
function will produce the sink of a protocol by dualizing its source.
We call J ⊥K the composition of J K and dual. A process follow-
ing a source protocol can be thought of as a logger. We thus call the
result of decoding a source the transcript or the log. The decoding
function Log is the composition of J K and source-of.

dual source-of sink-of : Proto0 → Proto0
dual end = end
dual (recv P ) = send (λ m → dual (P m ) )
dual (send P ) = recv (λ m → dual (P m ) )

source-of end = end
source-of (recv P ) = send (λ m → source-of (P m ) )
source-of (send P ) = send (λ m → source-of (P m ) )

sink-of P = dual (source-of P )

J ⊥K Log : Proto0 → ‹0

J P ⊥K = J dual P K
Log P = J source-of P K

Properties of dualization, sinks and sources: Dualization is its
own inverse (dual ◦ dual ≡ id) and thus is an equivalence on
protocols. This implies in particular that for two protocols P and Q
if (dual P≡ dual Q) then (P≡ Q). Both source-of and sink-of
are idempotent (source-of ◦ source-of ≡ source-of), where
a source is a fix point for source-of and a sink is a fix point for
sink-of. Finally, both source-of and sink-of are oblivious to
dualization (source-of ◦ dual ≡ source-of).

Communication, how and why? Assuming we have two pro-
cesses of matching protocols (J P K and J P ⊥K), can we make
them communicate and what do we get out of it? By an induction
on the protocol we proceed by cases. If the protocol ends then both
processes have to end. If the protocol is a recv then the first process
is a function p and the second is a pair (m , q ), the first projection
of the pair, m, which matches the argument for the function (p),



finally p m and q are valid processes ready to continue with proto-
col P m. If the protocol is a send its dual is a recv and this is the
symmetric situation where the first is a pair and second is a func-
tion. In short, yes they can communicate all the way through until
the end of the protocol. Moreover this is guaranteed to terminate
as this is defined by induction on the protocol. What is the result
though? We propose a solution which does not make a fixed choice
on what is returned and does not incur a change to the notion of
protocols. Communication can return a transcript of the communi-
cation using our type Log. The result of the communication is then
a nested pair of messages all the way to the end of the protocol.

telecom : ∀ P → J P K → J P ⊥K → Log P
telecom end end end = end
telecom (recv P ) p (m , q ) = m , telecom (P m ) (p m ) q
telecom (send P ) (m , p ) q = m , telecom (P m ) p (q m )

Remark: Our design choices are inspired by linear logic as ex-
plained section 3. Communication between two processes can be
seen as an application of the cut rule. The result of a cut usually is
a ⊥ (the one from linear logic, not to be confused with the empty
type O). However one cannot get much information out of a ⊥
while our log can be used as an observable result of process com-
munication, the choice of returning the transcript of the communi-
cation is departing from linear logic. This transcript is a key tool
for reasoning about the processes in our system.

2.2 Dependent Protocols: Illustrative Examples
With all the basic blocks in place, we can now turn to a sequence
of examples, each illustrating how to reuse standard dependent
type techniques. Along the way, we will present abstractions and
library parts which captures recurring patterns involving dependent
protocols.

Indexed Types: Dependent protocols enables us to precisely in-
dex the type of messages depending on the value of previous mes-
sages. For example, consider a process which receives a natural
number n and must send back a vector of size n containing natural
numbers:

P2 : Proto0
P2 = recv (λ (n : N ) → {- Receive n : N -}

send (λ (v : Vec N n ) →
end ) ) {- Parentheses around λ are
unnecessary when the scope extends completely
to the right. We shall now omit them. -}

Sending Proofs: Indexed types can be used to make the type of
messages more precise and thereby establish the properties they
should have. For instance, by using singleton types we can refine
our protocol P0 to make sure the process returns the product of the
two received numbers. As a bonus the types of m and n are now
inferred by their use in * .

P0’ : Proto0
P0’ = recv λ m → {- m : N -}

recv λ n → {- n : N -}
send λ (r : S〈 m * n 〉) → {- r ≡ m * n -}
end

t0’ : J P0’ K
t0’ = λ m n → (S[ m * n ] , end )

Protocols can be so precise that the participants are uniquely
defined from their type. This extreme situation can be used to

specify the two sides of a communication as a single definition. The
code for the participants can then be automatically extracted from
these precise protocols. For instance the process t0’ is uniquely
defined. The weakening from a precise protocol (such as P0’) to
a less precise protocol (such as P0 ) can be expressed as a function
from J P0’ K to J P0 K which simply erases the proofs.

Phantom messages using shape-polymorphism: Making the
protocols precise and detailed about what is communicated also
has its drawback. For instance some data might have to remain
secret. In the Diffie-Hellman key exchange protocol, for example,
each of the two participants has a secret exponent (x and y) and
they publicly exchange gx and gy (where g is the generator of the
multiplicative group G of order q) they finally agree on a common
secret gx y (as they can both raise the received message to the power
of their secret exponent). We can model this key exchange directly
using our protocols. The value gx y being agreed on is supposed to
be kept secret and be used for the continuation of the protocol. As
an example, we make it insecure by making one of the participants
finish by sending gx y .

Diffie-Hellman-Key-Exchange : Proto0
Diffie-Hellman-Key-Exchange =
send λ (gx : G ) →
recv λ (gy : G ) →
send λ (gx y : G ) →
end

If we wish to be more precise about the third message gx y and
assert it is equal to g ^(x * y ) we would need a way to mention x
and y. To do so we make use of the shape-polymorphism modality
available in Agda (wrapped as a data type, we call it �). This
modality enforces that no elimination can be done on values of
this type outside of the modality itself. However, these values can
still be passed around and be used in data type indices such as an
equation or a singleton type. Using this modality, a precise version
of the protocol can be given. We choose to send x and y using
two extra messages of type � Zq, where Zq is the additive group
of integers modulo q. The rest is of the protocol is made precise
through the use of singleton types. Finally to implement a process
for this protocol we need the following property about our group
structure: exp-law : ∀ x y→ g ^(x * y ) ≡ (g ^ y )^ x.

Precise-Diffie-Hellman-Key-Exchange : Proto0
Precise-Diffie-Hellman-Key-Exchange =
send λ (x : � Zq ) →
send λ (gx : S〈 g ^ x 〉) →
recv λ (y : � Zq ) →
recv λ (gy : S〈 g ^ y 〉) →
send λ (gx y : S〈 g ^(x * y ) 〉) →
end

Sending types: To send types and still comply with the pred-
icativity requirements of our type theory, we give a universe
polymorphic definition of the type Proto. With this, sending a
type such as N will result in a protocol of type Proto1 instead
of Proto0 . The notions presented above, such as decoding, are
actually universe-polymorphic. For instance, J K actually has type
∀ {`} (P : Proto ` ) → ‹ `. Here is a contrived way of
asking for a natural number m as a sequence of function applica-



tions (s and z), receiving a standard natural number n together with
a proof that sm (z ) equals n:

P3 : Proto1
P3 = recv λ (A : ‹0 {- A is a type -} ) →

recv λ (z : A ) →
recv λ (s : A → A ) →
send λ (m : A ) →
recv λ (n : N ) →
recv (N-rec s z n ≡ m ) λ p →
end{- N-rec is the recursor on N -}

t3 : J P3 K
t3 A z s {- Receive A : ‹0, z : A, s : A → A -}
= (s (s (s (s z ) ) ) , {- Sends s4 (z ) -}

{- This can be omitted as it is
uniquely defined from its type -} )

t3⊥ : J P3 ⊥K
t3⊥ = N , zero , suc , λ m → m , refl ,

{- Pairs are right associated.
No parentheses needed here. -}

Offering and making a choice: Given two protocols P and Q it
is common to combine them as a choice. We reuse here a stan-
dard notation used for linear logic and session types. A process t0
following the protocol P ⊕ Q is making a choice between proto-
cols P and Q and will thus continue with one of them. Whereas a
process t1 following the protocol (dual P ) N (dual Q ) is re-
sponding to a choice between protocols dual P and dual Q, and
thus needs to be able to continue both. The processes t0 and t1
should both communicate safely. We support ⊕ and N with-
out the need to extend our type for protocols. Indeed a choice is
no more than a single bit of information, so offering a choice is re-
ceiving one bit and making a choice is sending one bit. The point
is then to analyze this bit to define the rest of the protocol. To do so
we use the elimination for 2. The standard interpretation of N as
a product× and of ⊕ as a coproduct ] is recovered through these
two type isomorphisms: A× B ∼= Π 2 [0: A 1: B ] and A ] B ∼=
Σ 2 [0: A 1: B ]. Here are the definitions for choices (N and ⊕),
their units (P> and P0), and an example.

N ⊕ : (P Q : Proto0 ) → Proto0
P N Q = recv {2} [0: P 1: Q ]
P ⊕ Q = send {2} [0: P 1: Q ]

P> P0 : Proto0
P> = recv′ O end
P0 = send′ O end

p4 : J P0’ N P3 K
p4 = [0: t0’ 1: t3 ]

{- Two processes making different choice -}
p4⊥0 p4⊥1 : J dual P0’ ⊕ dual P3 K
p4⊥0 = 02 , t0
p4⊥1 = 12 , 2 , 4 , λ r →

The unit for N has to be equivalent to 1 (the unit for×) and
the unit for ⊕ has to be equivalent to O (the unit for ]). Another
way of viewing this is that the actions send and recv are n-ary
choices and the units are of arity zero. Therefore the unit for N is
defined as a receive in the empty type. The protocol P> decodes
to O → End which is equivalent to 1. The unit for ⊕ is defined
as a send of a value from the empty type it decodes to O × End

which is equivalent to O. Π-types and Σ-types can therefore be
used to recover the additive fragment of linear logic. Choices of
any arity are available by choosing the message type to be of a
particular size. The elimination of the message can then permit as
many continuations for the protocol as there are choices available.

Protocols which can be aborted: It is sometime convenient to ex-
tend a protocol such that one side has the ability to abort the com-
munication instead of being forced to continue sending messages.
The solution is to rewrite all the recv{M} into recv{M ] Abort}
(where Abort is another custom unit type) which gives the process
the ability to give up rather than perform a send action. The remain-
der of the protocol is extended such that if the message is tagged
with inl the protocol goes as usual otherwise if it is tagged inr
the protocol ends.

Sequencing and replicating protocols: Protocols should be com-
posable and reusable. If P and Q are two protocols, the sequencing
of them is expressible by induction on P. If we consider protocols as
trees, then sequencing should amount to substituting the end by Q
in P. However, using send and recv gives the ability to depend on
the message. We therefore need a dependent version of sequencing
which provides Q with all the messages from protocol P. We call
this function >>= as it resembles monadic sequencing (although
Proto0 is not even an endo-functor). Thereafter we define >>
which forgets about the log from P.

>>= : (P : Proto0 )(Q : Log P → Proto0 ) → Proto0
end >>= Q = Q
send P >>= Q = send λ m →

P m >>= λ log → Q (m , log )
recv P >>= Q = recv λ m →

P m >>= λ log → Q (m , log )

>> : (P Q : Proto0 ) → Proto0
P >> Q = P >>= λ → Q

Sequencing behaves like a monad, with end acting as a unit
and >>= is associative even though dependent types introduce a
twist. For instance sequencing is needed to express the (dependent)
concatenation of two logs. This concatenation is then needed to
express associativity of sequencing. Thus, sequencing is associative
and has end as a left and right unit.

Replicating a protocol P n times is achieved by recursively
iterating the sequencing of P and finally using end.

replicate : N → Proto0 → Proto0
replicate 0 P = end
replicate (suc n ) P = P >> replicate n P

Clients and Servers: A typical form of protocol involves a se-
quence of query/response rounds between a client and a server. Our
type Proto0 provides no support for (co)inductively defined pro-
tocols but we can still use a natural number to drive the number of
rounds. We first describe one round for the client side. The server



round protocol is the dual of the client round. Finally we replicate
the client round to get the client protocol using replicate.

module Client/Server (Query : ‹0 )
(Resp : Query → ‹0 ) where

ClientRound ServerRound : Proto0
ClientRound = send λ (q : Query ) →

recv λ (r : Resp q ) →
end

ServerRound = dual ClientRound

Client Server : N → Proto0
Client n = replicate n ClientRound
Server = dual ◦ Client

Dependent types for fueling: Even though our protocols are lim-
ited to be of finite depth, dependent types can be used to push these
limits further. For instance, a server could first wait to receive a
number n, and then be a server for n rounds. Similarly, a server
could itself choose the number of rounds:

DynamicServer StaticServer : Proto0
DynamicServer = recv λ n →

Server n
StaticServer = send λ n →

Server n

Sending protocols and processes: Although this remains to be
studied more thoroughly, a form of process mobility is already
possible here. Indeed, for any protocol P of type Proto0 , the
type J P K can be used as a message type. As an example, consider
a “cloud computing provider” for a protocol P, which receives two
matching processes and sends back the transcript:

module Sky (P : Proto0 ) where
Cloud : Proto0
Cloud = recv λ (p : J P K ) →

recv λ (q : J P ⊥K ) →
send λ (log : Log P ) →
end

cloud : J Cloud K
cloud p q = telecom P p q , end

The protocol and process above can be made more generic by
receiving the protocol P as the first message. Predicativity causes a
slight complication here as the resulting protocol is then a Proto1 .
Moreover, the lack of cumulativity forces us to lift the protocol and
types manually. Furthermore we need a process lifter which has the
following type : ∀ P→ J P K→ J lift0to1 P K where lift0to1
is the protocol lifter.

3. Concurrent protocols
In the examples shown so far, the communication, has been be-
tween two processes following some protocol P. From this, one
might get the impression that we need to extend the type Proto0 in
order to communicate with several processes. This is not the case
— we can already describe processes communicating with multiple
processes by interleaving protocols.

The interleaved protocol between P and Q is P O Q (pro-
nounced par) and is described below. Informally PO Q is a protocol
for a process that, at each step, can decide to make progress on ei-
ther P or Q. It is important to note that a process J P O Q K can do
more than what one could do with two processes J P K and J Q K.

This is best illustrated by an example let P be recv′ O end and
Q be its dual (namely send′ O end). There exists no process of
type J Q K since it would require us to find a value of an empty
type. However there is a process of type J P O Q K which would
first receive a value on the left and then send it back on the right.
We define O as a binary operation on protocols, combining the two
given protocols to yield one representing their interleaving.

O : Proto0 → Proto0 → Proto0
end O Q = Q
recv P O Q = recv λ m → P m O Q
P O end = P
P O recv Q = recv λ n → P O Q n
send{M}P O send{N}Q = send{M ] N}
[inl: (λ m → P m O send Q )
,inr: (λ n → send P O Q n ) ]

The order of equations in our definition makes it left biased.
This definition makes end a left and right unit. Moreover, if any of
the protocols is a recv P the whole protocol is going to also start
with the same recv action. The process has to receive the message
at some point, so it might as well do it immediately. The interesting
case is when both of the protocols are sending: here the process
will have the choice to make progress in one of the two protocols
first, and the rest of the protocol which made progress will still be
interleaved with the protocol which did not. The decision is made
by sending a message of type M ] N, so to progress on the left by
sending m : M the process can send inl m and then continue.

Tensors: A process t of the interleaved protocol P O Q is able
to decide the order in which to send messages. In order to com-
municate with t one needs to be able to communicate through any
interleaving. Such a process will follow a dual protocol, namely
dual P ⊗ dual Q (pronounced tensor). The definition for ⊗ ex-
changes the sends and receives from the definition of O.

⊗ : Proto0 → Proto0 → Proto0
end ⊗ Q = Q
send P ⊗ Q = send λ m → P m ⊗ Q
P ⊗ end = P
P ⊗ send Q = send λ n → P ⊗ Q n
recv{M}P ⊗ recv{N}Q = recv{M ] N}
[inl: (λ m → P m ⊗ recv Q )
,inr: (λ n → recv P ⊗ Q n ) ]

Fixing the left bias: As already mentioned, our definitions for O
and ⊗ are left biased. This means for instance that P O end is
not equivalent to P by definition. From this result we establish the
commutativity of O and ⊗. To resolve this issue we show that the
following equations hold:

P ⊗ end ≡ P {- equal protocols -}
P O end ≡ P {- equal protocols -}

{- equal process types -}
J P ⊗ send Q K ≡ ( Σ M λ m → J P ⊗ Q m K )
J P O recv Q K ≡ (Π M λ m → J P O Q m K )

Working with tensor: Any two processes for protocols P and Q
can be put in conjunction as a process for protocol P ⊗ Q. Such a
process can then be taken apart into two separate processes again.
However processes for tensor are not uniquely defined as a pair
of processes, as there are more processes of tensor than there are
pairs of processes. Intuitively our definition for tensor allows the
process to observe the order in which processes are queried. Our



definitions therefore do not completely conflate N and ⊗ as they
are co-provable but the process types are not equivalent. These
operations have the following types and computation rules:

⊗-pair : J P K → J Q K → J P ⊗ Q K
⊗-fst : J P ⊗ Q K → J P K
⊗-snd : J P ⊗ Q K → J Q K

⊗-β-fst : ∀ t u → ⊗-fst (⊗-pair t u ) ≡ t
⊗-β-snd : ∀ t u → ⊗-snd (⊗-pair t u ) ≡ u

3.1 Communication with a O:
A process s following protocol P O Q can communicate with a
process t following protocol dual P and another process u fol-
lowing protocol dual Q. However, the communication can be set
up in two ways. One could use ⊗-pair t u to build a com-
pound process following dual P ⊗ dual Q which is equal to
dual (P O Q ) and thus we can use the function telecom to ob-
tain a transcript for P O Q. A second way is to combine s with t,
for instance, to get a compound process following Q. This com-
pound process can then communicate with u to get a transcript
for Q. This second way is actually hiding the details of the commu-
nication between s and t, and is implemented through a function
we call O-apply. In figure 1 we show the full code for O-apply
together with the two ways of setting up the communication.

Linear implication: O-apply can be given another type more
appealing from a functional viewpoint. By introducing the standard
notation for implication in linear logic ( , the apply function has
the following type:

( : Proto0 → Proto0 → Proto0
P ( Q = dual P O Q

(-apply : ∀ P Q → J P ( Q K → J P K → J Q K

Composition: Given two processes s : J P ( Q K and t :
J Q ( R K we can construct a composite process t ◦ s :
J P ( R K. As with O-apply, the internal communication on
the protocol Q, is now hidden. (We omit the code as it requires nine
cases and therefore is not as readable as telecom or O-apply.)
Notice, however, that by picking P to be end we gets(-apply.

◦ : J Q ( R K → J P ( Q K → J P ( R K

3.2 Building processes for O:
The forwarder: For every protocol P it is possible to construct
a process fwd P : J P ( P K. Recall that P ( P is equal
to dual P O P, and since either P or dual P is going to receive
(unless both are end), the forwarder process can choose to receive
from that side and forward this message to the other side. In linear
logic this process corresponds to the axiom rule.

Absorption: Recall P>, the unit for N defined in section 2. It
intuitively means that someone can send a value of type O, which
is impossible so it is easy to disregard this case. However, it so
happens receiving a value of type O concurrently to any other
protocol is an equally impossible scenario. This principle is called
absorption:

>-O : ∀ P → J P> O P K
>-O P = λ( ) {- elimination of the empty type -}

Flexible left/right sending: Our definition of P O Q requires that
a process following this is only allowed to send when either both
P and Q are send actions or one of them is a send action and the
other is end. This can be inconvenient when building a process.
With the following combinators, as soon as one side is a send, it
becomes possible to send a message. The combinator O-sendR
is defined by induction on the protocol P and thus can send the
message when P ends, and send the message with inr when P is
a send action. Finally, when P is a recv action, the message is
received and passed to the transformed process p, which is then
recursively transformed. The converse operation is obtained from
commutativity of O.

O-sendR : ∀ {M}P{Q : M → Proto}
(m : M ) → J P O Q m K → J P O send Q K

O-sendR end m p = m , p
O-sendR (send P ) m p = inr m , p
O-sendR (recv P ) m p = λ n → O-sendR (P n ) m (p n )

O-sendL : ∀ {M P Q} → (m : M ) → J P m O Q K
→ J send P O Q K

O-sendL {M} {P} Q m pq =
coe (O-comm Q (send P ) )

(O-sendR Q m (coe (O-comm (P m ) Q ) pq ) )

3.3 Properties from Linear Logic:
Equality on protocols and processes: In order to assess whether
our definitions for ⊕, N, O, and ⊗ are valid, we established the
results expected from linear logic. First there is no proof of P0 as
it is equivalent to the empty AGDA type O. Second ⊕ enjoys
the disjunctive property as it is equivalent to ] . Any linear logic
formula (multiplicative and additive fragments) can be expressed
as a protocol P. A process type J P K is then the type of all closed
proofs of the formula P.

There are several levels at which an equation about proto-
cols P and Q can hold. The strongest level is when we can es-
tablish an equality between the protocols themselves P ≡ Q. From
such an equality it automatically holds that the process types are
equal, (i.e J P K ≡ J Q K). From a logical perspective, equal
formulae imply equal collections of proofs. The next level is
when we can establish an equality between the types of processes
J P K ≡ J Q K. This amounts to directly proving a equality on
collections of proofs. The next level is when we can only establish
the co-provability of the two formulas as J P K ↔ J Q K (where
A ↔ B is (A → B ) × (B → A ) ). The weakest level is when
we can only establish an implication between process types: J P K
→ J Q K.

A note on Univalence: We make good use of the Univalence
principle (Univalent Foundations Program 2013) available as a
variant of the type theory used by AGDA. Univalence enables us to
treat equivalent types (or isomorphic types) as equal. This principle
has far-reaching consequences such as function extensionality. Us-
ing the Univalence principle greatly simplifies our proofs as most
of these equivalences would otherwise be 4-5 times longer.

Additive fragment: The required properties are straightforward
to establish for this fragment. We first establish the equivalences
of ⊕, P0, N, P> with ], O, ×, and 1 respectively. Using these
equalities, the laws (associativity, commutativity, and units) follow
from these equivalent types. However, we can use the Univalence
principle on the equivalence which swaps 02 and 12 in the type 2.
This equivalence can then be used to show stronger statements for
commutativity, namely the protocols themselves are equal. We did



O-apply : ∀ P Q → J P O Q K → J dual P K → J Q K
O-apply end Q s end = s
O-apply (recv P ) Q s (m , p ) = O-apply (P m ) Q (s m ) p
O-apply (send P ) end s p = end
O-apply (send P ) (recv Q ) s p = λ n → O-apply (send P ) (Q n ) (s n ) p
O-apply (send P ) (send Q ) (inl m , s ) p = O-apply (P m ) (send Q ) s (p m )
O-apply (send P ) (send Q ) (inr m , s ) p = m , O-apply (send P ) (Q m ) s p

telecom2-⊗-pair : ∀ P Q → J P O Q K → J P ⊥K → J Q ⊥K → Log (P O Q )
telecom2-⊗-pair P Q pq p q = telecom (P O Q ) pq (⊗-pair p q )

telecom2-O-apply : ∀ P Q → J P O Q K → J P ⊥K → J Q ⊥K → Log Q
telecom2-O-apply P Q pq p q = telecom Q (O-apply P Q pq p ) q

Figure 1. Communication with a O

not define N as the dual of ⊕ but as a separate definition. We must
therefore establish that they are dual to each other.

{- Equivalences -}
J P ⊕ Q K ≡ ( J P K ] J Q K )
J P0 K ≡ O
J P N Q K ≡ ( J P K × J Q K )
J P> K ≡ 1

{- Commutativity -}
P ⊕ Q ≡ Q ⊕ P
P N Q ≡ Q N P
{- Associativity -}
J P ⊕ (Q ⊕ R ) K ≡ J (P ⊕ Q ) ⊕ R K
J P N (Q N R ) K ≡ J (P N Q ) N R K
{- Units -}
J P> N P K ≡ J P K
J P0 ⊕ P K ≡ J P K

{- Duality -}
dual (P ⊕ Q ) ≡ dual P N dual Q
dual (P N Q ) ≡ dual P ⊕ dual Q

The so-called additive mix happens to hold in our setting. This
is likely to come from the lack of linearity in type theory:
amix : J P N Q K→ J P ⊕ Q K.

Multiplicative fragment: The main discrepancy between linear
logic and our shallow embedding of it in type theory is to be found
in the multiplicative units (1 and ⊥). They both are played by our
constructor end. (With our definitions, end is a unit for O, ⊗, and
also N.)

Recall that duality is not immediate as we are defining these
connectives in terms of sends and receives. We therefore prove it.
Notice these equalities are on protocols directly and can therefore
apply more widely equalities on process types (using J K).

dual (P O Q ) ≡ dual P ⊗ dual Q
dual (P ⊗ Q ) ≡ dual P O dual Q

Unit laws between end and O or ⊗ hold by definition at the
level of protocols. Associativity for O and ⊗ also hold at the level
of protocols thanks to Univalence. Commutativity for O and ⊗ are
established as equalities between the corresponding process types
which is a strong statement on the identity between the different

processes of a given protocol (or proofs of a given statement). As
an example of a proof, the commutativity for O is given in figure 2.

{- Unit -}
end ⊗ P ≡ P {- by definition -}
end O P ≡ P {- by definition -}

{- Associativity -}
P ⊗ (Q ⊗ R ) ≡ (P ⊗ Q ) ⊗ R
P O (Q O R ) ≡ (P O Q ) O R

{- Commutativity -}
J P ⊗ Q K ≡ J Q ⊗ P K
J P O Q K ≡ J Q O P K

Distributivity of ⊗ over ⊕ and O over N holds directly at the
level of protocols. It suffices to unfold the definitions and to use
function extensionality.

(Q ⊕ R ) ⊗ P ≡ (Q ⊗ P ) ⊕ (R ⊗ P )
(Q N R ) O P ≡ (Q O P ) N (R O P )

As for the additive fragment, our multiplicative connectives sup-
ports the mix rule, which states that one can put two independently-
defined processes in parallel. The strategy used for interleaving
them is arbitrary; in our case it favors the left. This situation with
additive and multiplicative mix together with a common unit for the
multiplicative fragment also appear in Abramsky and Jagadeesan
model for linear logic (Abramsky and Jagadeesan 1994).

mmix : J P ⊗ Q K → J P O Q K

3.4 Examples from cryptography
One method for proving security used by cryptographers is to use
semantic security. Security notions are represented as probabilistic
games which usually involve guessing a secret random bit. The
security is then established by showing that no “efficient” adversary
is better than a random guess of the secret. Each game is defined as
the protocol that an adversary follows. Through these interactions,
the adversary is supposed to figure out a secret bit b, and by the end
of the protocol the adversary will send their guess for the value of
b.

The first game we describe is the Decisional Diffie-Hellman
(DDH) game, which is the underlying hardness problem for Diffie-



O-comm : ∀ P Q → J P O Q K ≡ J Q O P K
O-comm end Q = ! ap J K (O-endR Q )
O-comm (recv P ) Q = (Π=′ λ m → O-comm (P m ) Q ) • ! O-recvR Q P
O-comm (send P ) end = refl
O-comm (send P ) (recv Q ) = Π=′ λ m → O-comm (send P ) (Q m )
O-comm (send P ) (send Q ) = Σ' ]-comm-equiv [inl: (λ m → O-comm (P m ) (send Q ) )

,inr: (λ m → O-comm (send P ) (Q m ) ) ]

Figure 2. Commutativity of O

Hellman key exchange. An adversary for this game is a process of
the following protocol:

DDH : Proto0
DDH = recv λ (gx : G ) →

recv λ (gy : G ) →
recv λ (gz : G ) →
send λ (b : 2 ) →
end

The adversary receives three random values: gx , gy and gz of
the group G. The question to the adversary is whether z was random
in which case they should send 02 as the guess or whether z ≡ x
* y, in which case they should guess 12 . The communication is
happening with a process that is traditionally called the challenger.
Here, the challenger is represented by a function which takes a bit
and three random values of the type Zq.

DDH-challenger : 2 → Zq → Zq → Zq → J DDH ⊥K
DDH-challenger 02 x y z = (x , (y , (z , ) ) )
DDH-challenger 12 x y = (x , (y , (x * y , ) ) )

If the communication between DDH-chal b x y z, for random
x, y and z, ends with the adversary sending b then the adversary
wins. An adversary has an advantage if the distance between pure
guessing, i.e probability one half, and the probability of winning is
non-negligible.

ElGamal is an public key encryption system that is used to en-
crypt messages in a group G, as in Diffie-Hellman key exchange.
The secret key will be a number x : Zq and the public key
is g ^ x. The encryption function will also take a random number
y : Zq, and a message m : G and will output a pair of elements
in the group G. Decryption is the left inverse of encryption and re-
lies on the same law about exponentials as we saw in section 2 for
Diffie-Hellman key exchange.

exp-law : ∀ x y → (g ^ x ) ^ y ≡ (g ^ y ) ^ x

enc : (pk : G )(re : Zq ) → G → G × G
enc gx y m = (g ^ y , gx ^ y · m )

dec : (sk : Zq ) → G × G → G
dec x (gy , m ) = m / (gy ^ x )

One of the games used to prove security for encryption schemes
is IND-CPA, which stands for “ciphertext indistinguishability”. In
this game the adversary receives the public key and gets to pick two
messages of his liking. One of these messages will be encrypted
and sent back to the adversary, who must then guess if this is

an encryption of the first or the second message. Once again the
adversary is a process of the following protocol:

IND-CPA : Proto0
IND-CPA = recv λ (publickey : G ) →

send λ (messages : G × G ) →
recv λ (ciphertext : G × G ) →
send λ (b? : 2 ) →
end

Similar to the Decisional Diffie Hellman game, we will have a
challenger that will complete the communication with an adversary.
This challenger takes as input the secret bit b, the secret key x and
a random value y to use in the encryption.

IND-CPA-challenger : 2 → Zq → Zq → J IND-CPA ⊥K
IND-CPA-challenger b x y =
g ^ x , λ ms →
enc (g ^ x ) y (case b 0: fst ms 1: snd ms ) ,

One can now establish that IND-CPA security for ElGamal
can be reduced to the security of DDH. A proof of this fact will
transform any adversary A in the IND-CPA game into one in the
DDH game, such that if A had an advantage in IND-CPA, then the
transformed adversary will have an advantage in the DDH game.
Seen another way, if we can find a bound for the advantage of
adversaries in DDH, we can find a bound for the IND-CPA. Since
the semantic security proof is out of scope for this paper, we will
only focus on the transformation part and leave out the proof about
advantages.

The transformation will be a process sim following the protocol
IND-CPA ( DDH, since, given A : J IND-CPA K, we can have a
process apply sim A : J DDH K. Here sim will pretend to be a
challenger for A and we call these kinds of processes simulators.
A complete proof will proceed by game hopping and will actually
use two simulators. One of the simulators will simulate the case
when b ≡ 02 and the other for the case b ≡ 12 . Below we give a
simulator that will simulate the case when b ≡ 02 :

sim0 : J IND-CPA ( DDH K
sim0 gx gy gz = O-sendL gx

(λ m0m1 →
O-sendL (gy , gz · fst m0m1 )
(λ b → O-sendR b ) )

4. Multiparty protocols
In the previous section we described how a process could com-
municate with several other processes concurrently. However, each
of the communications is following a protocol involving only two
participants. When multiple participants have to follow a common
protocol a global view is more suitable. This has been studied as



multiparty session types also known as global types or choreogra-
phies (Honda et al. 2008).

For two party communications, it is enough to define a single
protocol for one participant, since the protocol for the other partic-
ipant is obtained by dualization. When multiple participants follow
a common protocol, we cannot use this technique. We therefore de-
fine a type analogous to the type Proto but which instead describes
“who sends to who”, such as “A sends m of type M to B”. (This
approach is also reminiscent of the notation used in security pro-
tocols, also known as Alice-Bob notation.) We name these global
types MProto0 for multiparty protocols. The participants will be
represented by an index type I. For multiparty protocols we expose
two methods of communication: a participant A : I can either send
a message m : M to participant B : I, or broadcast the message.

data MProto0 (I : ‹ ) : ‹1 where
send : (A B : I ){M : ‹}(P : � M → MProto0 I )

→ MProto0 I
broadcast : (A : I ){M : ‹}(P : M → MProto0 I )

→ MProto0 I
end : MProto0 I

When a participant broadcasts a message, everyone else re-
ceives it, and therefore the proceeding MProto0 may strongly de-
pend on the message. This situation corresponds to the send case of
the type Proto, since there is only one other participant. However,
if the constructor send is used to describe that A (Alice) sends a
message to B (Bob), then a third participant C (Charlie) will only re-
ceive a phantom message, and therefore cannot depend on the value
of this message. Our protocols are sequential (or synchronous), so
Charlie does know that some message has been sent, but not its
content. These phantom messages use shape-polymorphism (the �
modality) to describe the rest of the MProto0 . This ensures that
any participant will still be able to follow the protocol: Everyone
knows when a message is being sent, but only the recipient learns
the content. For instance, Charlie might learn that Alice sent a mes-
sage n : N to Bob, but for Charlie this is of type n : � N. Later
on Charlie might receive a message m : S〈 n / 2 〉, which would
tell him that n is either equal to 2 * n or 1 + 2 * n but nothing
more.

Projecting local views: We can move to a more local perspec-
tive where we describe for each participant which Proto they must
follow. The function P / φ will map any multiparty protocol P :
MProto0 I to a protocol of type Proto. A participant A : I should
follow the protocol P / φ if φ A is true (i.e. it returns 12 : 2).
Our projection function / is thus defined not only for single par-
ticipants, but for any decidable subset of the type I of participants.

/ : (P : MProto0 I )(φ : I → 2 ) → Proto
broadcast A {M} P / φ =
case (φ A ) 0: recv (λ (m : M ) → P m / φ )

1: send (λ (m : M ) → P m / φ )
send A B {M} P / φ = case (φ A )

0: (case (φ B )
0: recv (λ (m : � M ) → P m / φ )
1: recv (λ (m : M ) → P m / φ ) )

1: send (λ (m : M ) → P m / φ )
end / φ = end

Projection in details: The definition above proceeds as follows.
If the multiparty protocol is broadcast from A, we proceed by cases
on φ A. If φ A ≡ 02 , it means that A is not part of the subset φ
and thus participants in φ are not sending this messages, they can
receive it as it is broadcast. If φ A ≡ 12 then A is part of φ and

thus the group φ has to send. If the multiparty protocol is a send
from A to B, we first proceed by cases on φ A. If φ A ≡ 02 , then
φ does not contain the sender thus we proceed by cases on φ B. If
φ A ≡ 02 and φ B ≡ 02 , then φ does not contain the receiver
and thus the group only “receives” under the type �, which allow
them to follow the protocol. If φ A ≡ 02 and φ B ≡ 12 , then φ
contains the receiver and thus receives as a group. If φ A ≡ 12 ,
then φ contains the sender and thus the group has to send. Finally if
the protocol ends any group has to end as well. Notice that if Alice
has to send a message to herself she has to send it. This ensure that
Alice is not indefinitely waiting for herself.

Special projections: As a special case, we pick φ = λ → 12 ,
the group with containing all the participants. The projection
P / λ → 12 then corresponds to a source, i.e this is a protocol
which just sends. This projection being a source, any process im-
plementing it acts as a process sending the transcript (or the log) of
the communication. Furthermore if we pick φ = λ → 02 , the
group with no participants, then the projection P / λ → 02 is
a sink. It can be considered as an observer of the messages being
sent. Similar to how the result of a communication with Proto, is
a process of type Log P, the result of a multiparty communication
is a process of type J P / λ → 12 K.

Merging disjoints groups: One possible way to get the complete
transcript of all messages sent is to define for each participant a pro-
cess. Any participant Ai follows the protocol P / λ i → i == Ai .
A group of participants φ can then be merged to appear as sin-
gle “bigger” process representing the whole group. Groups can
be merged until all participants have been accounted for. We de-
fine a function merge which merges two groups φ and ψ. The
merge of two groups is only defined when the two group φ and ψ
are disjoint. To account for this requirement, an extra predicate
Disjoint φ ψ is used to guarantee that φ and ψ are never true
(i.e. equal to 12 ) at the same values. The Boolean disjunction
∨ can be pointwise-lifted to predicates (I → 2) as follows:

(p ∨o q ) i = p i ∨ q i. The definition of merge follows the
structure of / and has to account for 11 different cases. There
is only one case for end. For broadcast, there are three cases φ
could send, ψ could send, and φ together with ψ could receive.
For send there is 7 different cases. Without the disjointedness con-
dition, we would have situations where the two groups are both
claiming to send. This situation cannot be resolved by picking an
arbitrary message as one of the group would not be well-typed
anymore. The definition of merge can also be seen as a proof that
disjoint subsets of participants can always communicate.

merge : (P : MProto0 I ) → Disjoint φ ψ
→ J P / φ K → J P / ψ K → J P / φ ∨o ψ K

By iterating the merge until we have covered all participants,
we end up with a transcript of the communication. Therefore, as
long as the type for participants is finite, it is possible to iteratively
merge all the participants starting from the empty set. The transcript
can be seen as a certificate of the communication. As this iterative
merge process is exhaustively defined and terminating, it is also a
proof of deadlock-freedom and termination.

Properties of merging: Our merging operation has the empty
group of participants (φ = λ → 02 ) as a unit. Merging is also
commutative and associative. Finally, once the group is complete
(φ = λ → 12 ), it can only be further merged with the empty
group, moreover the process is only sending and thus acts as a
transcript. While quite straightforward and intuitively simple, the
number of cases quickly grows. Thus the formal AGDA proofs of
these facts remain to be completed.



4.1 Examples
The Two-Buyer-Protocol: a standard example used to describe
multiparty protocols is the two-buyer-protocol. In this protocol
there is a Seller and two buyers (Buyer1 and Buyer2 ). The two
buyers want to agree on a price to collectively buy a book from
the seller. The first step is Buyer1 sending the title of the book
they want to purchase. In the second step, the Seller informs the
buyers of the price of the book; we model this communication as
a broadcast. In the third step, Buyer1 sends to Buyer2 what share
of the price he wants to pay. The type of the share expresses that it
is lower than the price. In the fourth step, Buyer2 decides whether
or not to buy the book and broadcast the choice (ok or quit). If
Buyer2 decides to pay they must now send to the seller the address
for delivery, to which the seller responds with a delivery date. If
Buyer2 refuses to pay, using the quit message, then the protocol
ends.

data Response : ‹ where
ok quit : Response

data Participant : ‹ where
Buyer1 Buyer2 Seller : Participant

{------------ The protocol -----------------}
two-buyer-protocol : MProto0 Participant
two-buyer-protocol =

send Buyer1 Seller λ (title : String ) →
broadcast Seller λ (price : Price ) →
send Buyer1 Buyer2 λ (share :

Σ Price (λ n → n ≤ price ) ) →
broadcast Buyer2 λ {

ok → send Buyer2 Seller λ (address : String ) →
send Seller Buyer2 λ (delivery : Date ) →
end

; quit → end {- Buyer2 refuses to pay -} }

{---------------- Buyer1 -------------------}
is-buyer1 : Participant → 2

is-buyer1 Buyer1 = 12
is-buyer1 = 02

buyer1 : J MProto0 Participant / is-buyer1 K
buyer1 = "Homotopy Type Theory" , λ price →

(price /2 , half-is-lower-lemma price )
, λ { ok → λ address delivery → end

; quit → end }

{---------------- Buyer2 -------------------}
is-buyer2 : Participant → 2

is-buyer2 Buyer2 = 12
is-buyer2 = 02

buyer2 : J MProto0 Participant / is-buyer2 K
buyer2 title price (share , share≤price ) =

case share == (price /2 )
0: (quit , end )
{- share is half the price -}
1: (ok , "Somewhere nice" , λ delivery → end )

{----------------- Seller -------------------}
is-seller : Participant → 2

is-seller Seller = 12
is-seller = 02

seller : J MProto0 Participant / is-seller K
seller title = 42 , λ price share-share≤price →
λ { ok → λ address → "2014/03/10" , end

; end → end }

module RunExample where
P = two-buyer-protocol
disj0 = . . .
dist1 = . . .
buyers = merge P disj0 buyer1 buyer2
all = merge P disj1 seller
transcript-ok :

all ≡ ("Homotopy Type Theory" , 42 ,
(21 , half-is-lower 42 ) , ok ,
"Somewhere nice" , "2014/03/10" ,
end )

transcript-ok = refl {- by definition -}

Multiparty Diffie-Hellman: Another example is the multiparty
generalization of Diffie-Hellman key exchange. In this example we
will have three participants, represented by the type Participant.

data Participant : ‹ where
A B C : Participant

The secret value this time is gx y z . Participants are ordered, A,
then B, then C. In order for the participants to be able to compute
this secret, they first send their own public value to the next par-
ticipant: gx , gy and gz . After this first round, participant A can
compute gx y and gx z , but not gy z ; similar restrictions apply to
B and C. Therefore, to complete the protocol each participant sends
to next participant the part he or she is missing. In order to make
the protocol more precise, we add an initial round where the partic-
ipants broadcast a � version of their own secret. This enables us to
precisely type all the forthcoming exchanges.

3-way-Diffie-Hellman : MProto0 Participant
3-way-Diffie-Hellman =
broadcast A λ (x : � Zq ) →
broadcast B λ (y : � Zq ) →
broadcast C λ (z : � Zq ) →
send A B λ (gx : S〈 g ^ x 〉) →
send B C λ (gy : S〈 g ^ y 〉) →
send C A λ (gz : S〈 g ^ z 〉) →
send A B λ (gx z : S〈 gz ^ x 〉) →
send B C λ (gx y : S〈 gx ^ y 〉) →
send C A λ (gy z : S〈 gy ^ z 〉) →
end

5. Related work and future work
Linear logic: The connectives ⊕, N, O and ⊗ we have shown
in this paper have been inspired from linear logic (Girard 1987).
The idea that linear logic and communication are connected goes
back to the early 90s (Abramsky 1993; Bellin and Scott 1994).
In recent years this connection has been extended between π-
calculus session types and linear logic (Caires and Pfenning 2010;
Wadler 2012). Dependent types have been used before in order to
have more typesafe communication (Toninho et al. 2011), in which



later messages could depend on previous messages sent. But the
dependency is only for messages, the protocol is still fixed and
cannot evolve depending on the messages being sent.

The connectives in this paper correspond more closely to a
linear logic with mix rules, one for the multiplicative fragment
and one for the additive. One way of phrasing the multiplica-
tive mix rule is the term mmix : J P ⊗ Q K → J P O Q K,
which was shown in section 3, and which picks an interleaving
and acts as either of the processes it received. Similarly, the addi-
tive fragment can pick one side to continue on, as shown by the
term amix : J P N Q K → J P ⊕ Q K. Moreover, the units
for the multiplicative fragment are conflated. Game semantics mod-
els for linear logic such as (Abramsky and Jagadeesan 1994) fea-
tures similar peculiarities.

Our work does not give any account to the exponentials of linear
logic. What is the corresponding protocols? One idea would be
that weakening corresponds to protocols in which one can abort
the communication, which were shown in section 2. How does this
relate with earlier treatments (Caires and Pfenning 2010; Wadler
2012) as server replication and client requests?

Game semantics: One of the models of linear logic is to interpret
formulas as games and valid derivations as strategy from a game se-
mantics perspective (Blass 1992; Abramsky and Jagadeesan 1994).
It might be worthwhile to study what kind of games are express-
ible using our protocols. As seen in section 3, the end protocol acts
as a unit for both O and ⊗ , whereas from a linear logic per-
spective one might expect two different ones. By instead having
two end, one representing winning and one representing losing the
game, this discrepancy might disappear.

Session types: Session types were introduced to guarantee dead-
lock freedom for communication between two participants (Honda
1993). This work was later extended to work with multiple par-
ticipants. The global types described in section 4 share similarity
with global types in multiparty asynchronous session types (Honda
et al. 2008). One difference is that in multiparty session types, the
remainder of the protocol for a participant can only depend on a
messages received by that participant. In our setting they are phan-
tom messages models using the�modality, and use of broadcast.

It is customary in session types to include fixpoints in the proto-
cols; this is something we have not investigated so far. We were in-
terested in seeing how far we could go just with dependent versions
of send and recv, and we believe that fixpoints are an orthogonal
question that should be studied in the future.

6. Conclusion
We have presented a theory of communication described through
the use of dependent types. The use of dependent types allows us to
have an elegant, small yet expressive definition of protocols. Given
two processes which can communicate we can produce a transcript
of all the messages being exchanged throughout the communica-
tion. The type for both participants and the transcript are all func-
tionally derived from the protocol. Using dependent types we are
able to combine protocols in a similar manner as the connectives
from linear logic. In particular, the connective O made it possible
to communicate on several protocols concurrently. This is achieved
even if the protocols themselves describe the view of a single par-
ticipant.

Furthermore we have shown a version of global types for de-
scribing multiparty communication. These global types can then
be projected out to a protocol for any subset of the participants.
In a multiparty setting the dependencies are limited as everyone
needs to be synchronized. We retain expressive dependent proto-
cols through the use of phantom messages (shape-polymorphism,

� A) and the possibility to broadcast a message. Everything in this
paper has been formalized in AGDA.
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