
Foldable containers and dependent types

Daniel Gustafsson
IT University of Copenhagen

dagu@itu.dk

Nicolas Pouillard
IT University of Copenhagen

npou@itu.dk

Abstract
Functional programs using foldable containers need reasoning tools
as they are not equipped with laws. Moreover we want to allow any
finite type to be foldable as well.

Folding over all the values of a finite type is particularly inter-
esting in a dependent type theory which features Π and Σ types.

Our solution uses parametricity to show how foldable contain-
ers relate to monoid homomorphisms. Our development is imple-
mented and verified within the type theory of Agda which is com-
patible with parametricity.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]

Keywords Agda, Foldable Containers, Formal reasoning, Func-
tional Programming, Homotopy Type Theory, Parametricity, Type
Isomorphisms, Type Theory

1. Introduction
Folds (or catamorphisms) are a fundamental part of the structure of
functional programs. Intuitively, they provide a way to summarize
or reduce a data container down to a single value.

A large body of the different ways to reduce a data container
is captured by the notion of monoid. Monoids arise quite naturally
and are ubiquitous in programming, especially in functional pro-
gramming. Monoid is one of the standard type classes in HASKELL.
We recall here its definition1:

class Monoid m where
ε :: m
(⊕) :: m → m → m
{- identity: ε ⊕ x == x ⊕ ε == x -}
{- associativity: x ⊕ (y ⊕ z) == (x ⊕ y) ⊕ z -}

mconcat :: [m] → m
mconcat = foldr (⊕) ε

The function mconcat then takes any list and reduce it down
to a single value using the monoid operations. While lists are

1 We use ε and (⊕) instead of mempty and mappend

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
TODO, TODO.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM TODO. . . $15.00.
http://dx.doi.org/10.1145/TODO

extensively used in functional programming they are hardly the
only data container available. Reducing another data container can
be achieved by first producing a list and then reducing it. However
one might wish to directly reduce the container and thus provide a
specialised mconcat/foldr function. This generalisation has been
made in the Foldable type class2, which is displayed below:

class Foldable t where
foldMap :: Monoid m ⇒ (a → m) → t a → m
foldr :: (a → b → b) → b → t a → b

The minimal complete definition is to define one of these func-
tions, as they can be implemented in terms of each other. The
foldMap function almost has the same type as mconcat. The dif-
ference is that the elements in the container do not have to form a
monoid, only that it is possible to map them to a monoid.

In contrast with the Monoid class, there are no laws associated
with the Foldable class. This might be discouraging but as we
will see it is still possible to reason about programs that uses the
Foldable class. For example, one of potential laws for foldr is
that its application should have the same effect as producing a list
and applying List.foldr on it. But it can be proven that any type
correct term will satisfy this law by parametricity. Further examples
highlighting the use of parametricity to prove similar results will be
shown using the language AGDA [12].

One of the results following from parametricity is how a monoid
homomorphism distributes over a fold. Here, a monoid homo-
morphism is represented by a newtype MonoidHom which wraps
a function between two monoids respecting the monoid struc-
ture. The property is here presented as a property in the style of
QuickCheck [4].

newtype MonoidHom m n =
MonoidHom { hom :: m → n }
{- hom ε = ε -}
{- hom (x ⊕ y) = hom x ⊕ hom y -}

distHomProp :: (Monoid m, Monoid n, Foldable t, Eq n)
⇒ MonoidHom m n → (a → m) → t a → Bool

distHomProp (MonoidHom h) f t
= h (foldMap f t) == foldMap (h ◦ f) t

A mathematical example of this property is to pick the expo-
nentiation function as the monoid homomorphism from (N,0,+) to
(N,1,*). Another example is to pick boolean negation (¬) as the
monoid homomorphism from ({0,1},1, ∧) to ({0,1},0, ∨) which
follows by the De Morgan law:

b(
∑

a∈A g(a)) ≡
∏

a∈A b
g(a) ¬

(∨
a∈A g(a)

)
≡
∧

a∈A ¬g(a)

2 The actual Foldable type class has more methods with default imple-
mentations which we elide for concision here.

Contributions:

• We describe exploration functions, a class of folds which arise
from the use of foldMap, we show how they can be combined
and transformed to achieve feature-rich explorations in a mod-
ular way as discussed in Section 2.
• We make a precise account (Section 3) of the parametricity

results (a.k.a. free-theorems) of these exploration functions.
These results automatically apply to any well typed instance
of the type class Foldable because of the polymorphic type
of foldMap. We show how monoid homomorphisms distribute
over explorations among other algebraic properties.
• We show how dependent types enable to explore not only val-

ues, but also types (Section 4). In particular we show how some
explorations exactly correspond to Π and Σ types.
• We describe a class of summation functions (a particular in-

stance of fold) which we call adequate. These adequate summa-
tion functions can be used to compute uniform discrete proba-
bilities and reason about probabilistic functions (Section 5.2).
In particular we show how adequacy together with type equiva-
lences can lead to elegant proofs (Section 5).
• For the sake of readability, we display only code fragments

in the paper. However, a self-contained AGDA development
is available online [5, 6]. Moreover, the results (those not
involving dependent types), should hold in HASKELL using
foldMap3.

Notations: In the remaining part of the paper, our definitions
are presented in AGDA [12] notation. With ‹ we denote the
type of types. The function space is presented as A → B, while
the dependent function space is presented as (x : A) → B x,
∀ (x : A) → B x, or Π A B. An implicit parameter, can be
introduced via ∀{x : A} → B x, and can be omitted at a call
site if its value can be uniquely inferred from the context. There
are shortcuts for introducing multiple arguments at once or for
omitting a type annotation, as in ∀{A} {i j : A} x → e. We
will use mixfix declarations, such as] , where underscores de-
note where arguments go. AGDA is strict about whitespace, for
instance explore] is a single identifier because it contains no
space.

Core types: As a tool AGDA comes with no predefined concepts
other than types and functions, therefore everything has to be de-
fined. In particular there is no specific sort for propositions: every-
thing is in ‹. The empty type is denoted asO and used to represent
falsity. The type family ¬ : ‹ → ‹ is the logical negation, ¬ A
is defined as A → O. The type 1 has one value namely 01 and it
is used to represent trivial truth. The type 2 has two values (02 and
12), and it is used both to denote a single bit of information and as
a Boolean value where 02 denotes false and 12 denotes true. The
type family X : 2 → ‹ maps 02 to O and 12 to 1. We use the
type Fin n which inductively defines the natural numbers strictly
below n. We mainly use this type as a representative for finite types
with n values. The type] : ‹ → ‹ → ‹ corresponds to the
HASKELL type Either, the constructors are inl and inr. We use
] both as a constructive disjunction and as a disjoint union. The

type family Dec : ‹ → ‹ is the type of decidable types, Dec A
is equivalent to A] ¬ A. The type family ≡ is the type of
propositional equality, also called the identity type. AGDA reserves
the usual equality symbol = for definitions; we apply this conven-
tion to our mathematical statements as well.

3 We assume the standard hypothesis about type class laws and restricting
to safe features.

A note on Σ-types and type equivalences: In type theory Σ A B
is used to denote a dependent sum (sometimes called a dependent
pair). Here A is a type and B is a dependent type over A (hence B has
type A → ‹). These pairs can be built using the , constructor
(, has type (x : A) → B x → Σ A B). Moreover, pairs come
with two projection functions fst : Σ A B→ A and snd : (p : Σ
A B)→ B (fst p). The type A ' B is used to denote equivalences
between types A and B. To be precise we use the half-adjoint
equivalences. An equivalence is therefore made of two functions,
f : A→ B and g : B→ A, two homotopies ε : ∀ x→ f (g x)≡ x
and η : ∀ x→ g (f x)≡ x, and final homotopy for coherence: τ :
∀ x→ f (η x)≡ ε (f x). The type ' is an equivalence relation
for types.

Remarks on function extensionality and univalence: A Type
Theory is said to support function extensionality when functions
equal at every point are considered equal. Namely when the fol-
lowing statement is provable: ∀ f g→ (∀ x→ f x ≡ g x)→ f ≡
g. Pure Intensional Type Theory does not have a proof of function
extensionality, even in the case where both domain and codomain
are finite. Indeed in pure Intensional Type Theory a close proof of
the identity type must be the reflexivity witness, hence only func-
tions definitionally equal can be shown to be propositionally equal.

One promising solution to the problem of function extension-
ality in a constructive setting is homotopy type theory [14] which
has generated much interest in recent years. This theory includes
the univalence axiom, which states that homotopy equivalence of
types is homotopically equivalent to identity of types: as a conse-
quence we get that equality of functions is extensional equality. In
some proofs, we assume to be working in a homotopy type the-
ory setting were function extensionality and univalence hold. We
made this choice for convenience reasons as most of our proofs
were first written without using univalence. In our AGDA develop-
ment, we use the flag --without-K which disable the K-rule dur-
ing pattern-matching. As far as we can tell the only modules using
the K-rule are only using it for the set of natural numbers (Fin and
Vec). This should be resolved as soon as --without-K becomes
smarter about types which are sets.

2. Folds and explorations
In order to be able to work more conveniently with parametricity
later on, we focus here only on foldMap after it has already been
applied to a container. Since we extensively use this type we give it
a name, Explore which is expressed in HASKELL as:

type Explore a = ∀ m. Monoid m ⇒ (a → m) → m

toExplore :: ∀ a t. Foldable t ⇒ t a → Explore a
toExplore t f = foldMap f t

The AGDA version of Explore is given below, instead of a type
class constraint, the monoid operations are passed explicitly:

Definition 1. An exploration function for a type A is given a type M,
a value ε of type M, a function ⊕ of type M → M → M, and
function f of type A → M. The exploration function finally yields a
result of type M:

Explore : ‹ → ‹

Explore A = {M : ‹}(ε : M)(⊕ : M → M → M)
→ (A → M) → M

For any type A, an exploration function is given a default re-
sult ε, a binary operator ⊕ and a function f realising the body
of the big operator. The function f is then called on every value

of the type to be explored. All results are combined with the op-
erator ⊕ . If there are no values to explore the default result ε is
returned. One viewpoint is that the task of an exploration function
is thus to transform any small operator ⊕ into the corresponding
big operator

⊕
of type (A → M) → M. For instance, if explore

is an exploration function for a type A, then explore 0 + is
∑

and explore 1 * is
∏

, where 0, 1, + and * are defined on
the type N.

A continuation monad with environment: The type of explo-
ration can be viewed as a continuation monad ((A → M) → M),
with two reader monad transformers giving access to ε and ⊕ .

Monoid laws: Note that the type does not specify that the explo-
ration will be over a monoid. The laws are not given, only the op-
erations. When proving properties about explorations, the monoid
laws will have to be assumed as well. Not having to provide the
monoid laws makes it easier to write transformations of exploration
functions.

Finiteness: Given AGDA’s type discipline, the type Explore A
enforces that any exploration function will only explore a finite
number of values of the type A. This is enforced by AGDA functions
being total (strongly normalizing and exhaustively defined) and
by parametricity [2, 13, 16]: since the exploration function knows
nothing about the type M it must use what is given to it.

Exhaustiveness: Some exploration functions can be defined to
explore all the values of a type A. These exploration functions are
then said to be exhaustive. Originally, the name “exploration” was
coined because these functions were designed to systematically
examine every possible value of the type. The exhaustiveness of
an exploration implies the finiteness of A.

2.1 Working with exploration functions
Exploration functions can be obtained by folding over data struc-
tures such as lists or trees. However, one can also define exploration
functions directly. This corresponds to the polymorphic encoding
for binary trees. In this section we show how to build, combine,
transform, and reason directly about these. Below exploreD6 is
an example of an exploration function for D6, the type of six sided
dice:

data D6 : ‹ where
: D6

exploreD6 : Explore D6
exploreD6 ε ⊕ f

= (f ⊕ (f ⊕ f))⊕(f ⊕ (f ⊕ f))

Building exploration functions: In order to easily define new ex-
ploration functions we provide three building blocks inspired by
binary trees. These three combinators are defined for any type A
and correspond to the constructors empty, leaf, and fork re-
spectively. Figure 1 shows the function empty-explore, an ex-
ploration function which does not explore anything and just re-
turns the default value ε. The function point-explore takes a
value x of type A and defines an exploration function which ex-
plores only this point x using the given exploration body. Finally
the function merge-explore takes two exploration functions and
combines them using the received binary operator ⊕ .

For exhaustively exploring finite types, however, we have more
specialised combinators. Generally, finite types are a combina-
tion of sums and products, therefore exploration combinators are
provided for those. As base cases we have exploration functions
for types such as O, 1 and 2. For sum types A] B, the explo-
ration explore] eA eB ε ⊕ f combines the two results given

empty-explore : ∀ {A} → Explore A
empty-explore ε ⊕ f = ε

point-explore : ∀ {A} → A → Explore A
point-explore x ε ⊕ f = f x

merge-explore : ∀ {A} → Explore A → Explore A
→ Explore A

merge-explore e0 e1 ε ⊕ f
= (e0 ε ⊕ f) ⊕ (e1 ε ⊕ f)

explore] : ∀ {A B} → Explore A → Explore B
→ Explore (A] B)

explore] eA eB ε ⊕ f

= (eA ε ⊕ (f ◦ inl)) ⊕ (eB ε ⊕ (f ◦ inr))

explore× : ∀ {A B} → Explore A → Explore B
→ Explore (A × B)

explore× eA eB ε ⊕ f

= eA ε ⊕ (λ a → eB ε ⊕ (λ b → f (a , b)))

exploreO : Explore O
exploreO = empty-explore

explore1 : Explore 1

explore1 = point-explore 01

explore2 : Explore 2

explore2 = merge-explore (point-explore 02)
(point-explore 12)

Figure 1. Exploration functions

by exploring the function f specialised to types A and B using inl
and inr — the injections for the type] . The two results are
then combined using ⊕ . For Cartesian products A × B, the ex-
ploration explore× eA eB ε ⊕ f nests the exploration of B
into the function exploring A. Note how this combinator is indepen-
dent of the operator ⊕ . Support for dependent pairs and functions
is detailed in Section 4.∑

x,y∈A×B

f (x,y) ≡
∑
x∈A

∑
y∈B

f (x,y)

Derived big operators: In Figure 2 we recall some standard big
operators. These are derived from any exploration function by
choosing the appropriate monoid structure. Sums and products
are defined using the monoids (N , 0 , +) and (N , 1 ,
*) as mentionned earlier. From a summation function we derive

a function count which is counting the occurrences of a given
predicate. Summing (with sum or count) using a constant function
1 yields the size of the exploration. Finally the functions all
and any test a given predicate to tell whether it holds for all the
explored values or one of the explored values, respectively.

2.2 Exploration transformers
In this section we describe a series of transformations on explo-
ration functions. These tools provide ways to enhance explorations
in a modular way. We use the term exploration transformer for the
operations which map exploration functions to exploration func-
tions.

A prototypical program involving an exploration function is the
brute force exhaustive search. This could be the search to inverse

module BigOps {A}(exploreA : Explore A) where
sum : (A → N) → N
sum = exploreA 0 +

product : (A → N) → N
product = exploreA 1 *

count : (A → 2) → N
count f = sum (2BN ◦ f)

{- 2BN maps 02 to 0 and 12 to 1 -}

size : N
size = count (const 12)

all : (A → 2) → 2

all = exploreA 12 ∧

any : (A → 2) → 2

any = exploreA 02 ∨

list : List A

list = exploreA [] ++ []

tree : Tree A

tree = exploreA empty fork leaf

first : Maybe A

first = exploreA nothing | |? just
where
| |? : Maybe A → Maybe A → Maybe A

nothing | |? my = my
(just x) | |? = just x

Figure 2. Derived big operators

a function, such as a hashing function. Sometimes the domain
(message space) is relatively small and searching it can be used
to gather information. Here let us suppose a type A together with an
exploration function exploreA , a type B together with an equality
test (== has type B→ B→ 2), and a function H : A → B. In
practice one might think of the function H as being hard to inverse.
The following program naively inverts H by exploring all possible
messages, and returning the list of all messages which maps to the
input digest:

H- 1 -list : B → List A
H- 1 -list b = exploreA [] ++ λ a →

if H a == b then [a] else []

While straightforward, the exploration in H- 1 -list shows a
lack of modularity: indeed the data structure (here a list) for the
result is entangled with the filtering.

Explorations can be chained in such a way that each explored
value of type A can yield a nested exploration on a type B. The
resulting exploration aggregates all the spawned explorations and
yields results of type B:

>>= : Explore A → (A → Explore B) → Explore B
(eA >>= eB) ε ⊕ f = eA ε ⊕ λ x →

eB x ε ⊕ f

Explorations are monadic: The suggestive name (>>=) high-
lights that Explore forms a monad, where point-explore is the
unit (or return). This monadic structure comes as no surprise once
we recall that the type (A → M) → M is the continuation monad.

The function gfilter-explore (for generic filter) discards
undesirable values and selects what parts to retain from the de-
sirable ones. Using >>= filtering is nicely expressed by chain-
ing the exploration on the type A with either empty-explore or
point-explore, depending on the explored value x. By lifting
the given function f to a predicate, the function filter-explore
uses gfilter-explore.

gfilter-explore : (f : A → Maybe B)
→ Explore A → Explore B

gfilter-explore f eA = eA >>= λ x → case (f x) of λ
{ nothing → empty-explore
; (just y) → point-explore y }

filter-explore : (p : A → 2)
→ Explore A → Explore A

filter-explore p = gfilter-explore (λ x →
if p x then just x else nothing)

The previous example, inverting a function H, can be built us-
ing filter-explore (λ a → H a == b); the result is then an
exploration from which one can get a list (using the list monoid) or
the first matching values (using a monoid for Maybe).

A rather trivial exploration transformer is explore-backward,
which flips the arguments of the given small operator. With this
function we emphasis how monoid transformers (such as flip 4)
yield exploration transformers.

explore-backward : Explore A → Explore A
explore-backward eA ε ⊕ = eA ε (flip ⊕)

As a last example of a transformer we consider the monoid of
endomorphisms featuring the identity function as the neutral el-
ement and function composition as the multiplication operation.
Exploring with the monoid of endomorphisms expects a function
body that will turn values of type A into functions of type M → M.
The body composes the original small operator ⊕ with the orig-
inal body f. We finally pass in the default value ε to the resulting
big composition. When (ε, ⊕) is a monoid, this transformation
computes to the same result as the original exploration. Its utility
lies in the fact that function composition has an associative com-
putational content which will force all the calls to ⊕ to be asso-
ciated to the right, finally ending with a single ε. This technique,
known as difference lists, has been used before and is part of the
standard toolbox of functional programmers. Its original motivation
was to improve the performance, but it is also useful for reasoning
since it gives associativity for free. A proof of this technique has
been given in [15] and it is our Corollary 2. Notice that this tech-
nique is nicely captured by the following exploration transformer:

explore-endo : Explore A → Explore A
explore-endo eA ε ⊕ f = eA id ◦ (⊕ ◦ f) ε

3. Relational Parametricity
Since the type of foldMap is polymorphic it satisfies some theo-
rems for free [16]. Indeed some programming languages have been
shown to enjoy a so called abstraction theorem [2, 13, 16]. The
theory behind HASKELL and AGDA are known to enjoy this ab-

4 flip transforms a two arguments function to flip its argument.

JExploreK : Explore A → Explore A → ‹

JExploreK e e’ = (M M’ : ‹)(JMK : M → M’ → ‹)
(ε : M)(ε’ : M’)(εr : JMK ε ε’)
(⊕ : M → M → M)(⊕’ : M’ → M’ → M’)
(⊕r : ∀ {x y}{x’ y’} → JMK x x’ → JMK y y’

→ JMK (x ⊕ y) (x’ ⊕ y’))
(f : A → M)(f’ : A → M’)
(fr : ∀ x → JMK (f x) (f’ x))
→ JMK (e ε ⊕ f) (e’ ε’ ⊕’ f’)

Figure 3. Parametricity relation for Explore

straction theorem. The statement for such free-theorems are me-
chanically derived from types. Any well-typed program enjoys the
free-theorem arising from its type. While they are uninformative
for monomorphic types they are interesting for polymorphic types.
Usually, these theorems are stated using pen and paper proofs for
HASKELL programs but if we move to a dependently typed lan-
guage, such as AGDA, the types, programs, statements and proofs
can inhabit a common system. Although these free-theorems are
mechanical they are currently not automated by the system. In
our online development we provide and use a library which helps
streamline this process, we however here present a more syntactic
approach.

The high level overview is that each type T : ‹ will induce
a (binary) relation, which we will denote by oxford brackets JTK
: T → T → ‹. The (binary) free-theorem, also known as the
fundamental theorem, is that this relation is reflexive, i.e for all
terms t : T there is a proof term JtK : JTK t t. If parametricity
was internalised then this proof would come for free, but here
we instead need to prove it for each instance. The J K relation is
defined by induction on the type. For example, functions are in the
relation if they map related inputs to related outputs:

JA→BK : (A → B) → (A → B) → ‹

JA→BK f f’ = (x x’ : A)
→ JAK x x’ → JBK (f x) (f’ x’)

Since polymorphism is expressed using a universe type ‹, we
need to know what the relation J‹K is. Following [2] we pick J‹K
to be the type of all relations. Intuitively J‹K should at least contain
the identity relation since it corresponds to the generated relation
for basics types such as 2. The main reason to include all relations
is to strengthen the parametricity results. Indeed when using the
parametricity result of a polymorphic function one get to choose
freely the relation which is quite useful.

J‹K : ‹ → ‹ → ‹

J‹K A B = A → B → ‹

Furthermore we need to extend the relation on functions to
dependent functions in order to express the type of polymorphic
functions. We follow [2] again and the tricky part in defining the
relation for a dependent function such as (x : A) → B x is that
the type of B is B : A → ‹. The relation on B must have the type
JA→‹K B B, namely (x x’ : A)→ JAK x x’→ B x→ B x’→
‹. This means that the relation on B is indexed on the two A which
are known to be related by JAK.

JΠABK : ((x : A) → B x) → ((x : A) → B x) → ‹

JΠABK f f’ = (x x’ : A)
→ (xr : JAK x x’) → JBK x x’ xr (f x) (f’ x’)

Now all the tools are available to derive what the relation is for
the Explore type. This relation is defined in Figure 3, and while it
looks daunting it is fairly straightforward to use. The trick lies in
that it is possible to pick any relation for JMK. For example we use
it to prove that a monoid homomorphism distributes over explore.

Theorem 1. For any type A, exploration function eA : Explore
A, two monoids: (M , ε , ⊕) and (N , ι , ⊗), we have a
monoid homomorphism h from M to N, and a function f : A → M,
then h (eA ε ⊕ f) ≡ eA ι ⊗ (h ◦ f)

Proof. By parametricity of eA we pick JMK x y to be h x ≡ y. We
need to prove: h ε ≡ ι and for all x, x’, y and y’ such that h x≡ x’,
h y≡ y we have h (x⊕ y)≡ x’⊗ y’. Both of these requirements
follow from the fact that h is a monoid homomorphism. The final
requirement is that for all x, h (f x) ≡ h (f x) holds, which is
trivial.

Corollary 1. For any type A, exploration function eA : Explore
A, function f : A→ N and constant k : N, we have k * sum eA f
≡ sum eA (λ x→ k * f x).

Proof. By Theorem 1 and the fact that (* k) is a monoid homo-
morphism, since k * 0 ≡ 0 and k * (x + y) ≡ k * x + k * y.

Theorem 2. For any type A, exploration function eA : Explore A,
a monoid (M , ε , ⊕) equipped with a preorder ≤ such that
⊕ is monotonic, two functions f , g : A→ M such that for all x

f x≤g x, we have eA ε ⊕ f≤eA ε ⊕ g.

Proof. By parametricity of eA we pick JMK to be ≤ , all the
requirements follow from assumptions.

We remark that nowhere in our AGDA development we postu-
late these parametricity results. Instead, for each exploration func-
tion we provide the corresponding proof of the parametricity result.
Building such a proof is mechanical thanks to the functional nature
of the underlying abstraction theorem.

3.1 Exploration Principle
The parametricity relation is a powerfull tool but sometimes we
want something closer to an induction principle. An induction
principle allows the target proprety (known as JMK in our previous
proofs) to be not only a relation between two explorations, but can
be an arbitrary predicate on the exploration function itself.

Definition 2. The exploration principle states that any property P
on an exploration function eA holds if: P holds for empty-explore;
P holds for all points (using point-explore); and P is preserved
by merge-explore.

ExploreP : ∀ {A} → Explore A → ‹

ExploreP {A} eA =
∀ (P : Explore A → ‹)

(εP : P empty-explore)
(⊕P : ∀ {e0 e1} → P e0 → P e1

→ P (merge-explore e0 e1))
(fP : ∀ x → P (point-explore x))

→ P eA

Proper exploration functions come with the principle defined
above. This principle is the induction principle on binary trees
where empty, fork, and leaf, respectively become empty-explore,
merge-explore and point-explore. Put differently, this prop-
erty enforces that an exploration function is essentially a binary

tree where empty trees are ε, forks are calls to ⊕ , and leaves are
calls to f.

Moreover, while the type of the principle (i.e. ExploreP) also
looks a bit daunting, it is a simple mechanical process to prove
it: one mimics what happens in the underlying exploration func-
tion. Below is the actual AGDA proof term of this principle for
our exploreD6 function. Thanks to implicit parameters the proof
term exploreD6P is almost like exploreD6:

exploreD6P : ExploreP exploreD6
exploreD6P P εP ⊕P fP

= (fP ⊕P (fP ⊕P fP))
⊕P (fP ⊕P (fP ⊕P fP))

In an impredicative setting at least (such as ‹ : ‹), the prin-
ciple is equivalent to the parametricity relation, but so far we have
not been able to prove this correspondence in a predicative setting.
This causes some duplication in the amount of work one has to do
when providing an exploration function, though this work is mostly
mechanical.

Theorem 3. For any type A, exploration function eA : Explore A,
a commutative monoid (M , ε , ⊕) and two functions f , g :
A→ M, we have eA ε ⊕ (λ x→ f x⊕ g x)≡ eA ε ⊕ f⊕ eA

ε ⊕ g.

Proof. By the principle of eA and picking the motive 5 P e to be
e ε ⊕ (λ x→ f x ⊕ g x) ≡ e ε ⊕ f ⊕ e ε ⊕ g.
We need to show P empty-explore which is ε ≡ ε ⊕ ε which
follows by monoid law. The case P (merge-explore e0 e1)
where P e0 and P e1 follows by the interchange law (i.e for all a, b,
c, and d then (a ⊕ b) ⊕ (c ⊕ d) ≡ (a ⊕ c) ⊕ (b ⊕ d)). Finally
we need to prove for all x that P (point-explore x) which is
f x ⊕ g x ≡ f x ⊕ g x which is trivial.

Theorem 4. For any type A, exploration function eA : Explore
A, two monoids6 (M , εm , ⊕m) and (N , εn , ⊕n), two
functions fm : A → M and fn : A → N, we have the explo-
ration of the product monoid is the product of explorations, namely
eA ε ⊕ < fm× fn >≡ (eA εm ⊕m fm , eA εn ⊕n

fn) where ((M×N) , ε , ⊕) is the product monoid.

Proof. By the principle of eA and picking the motive to be P e to
be e ε ⊕ < fm× fn >≡ (e εm ⊕m fm , e εn ⊕n fn),
we need to show P empty-explore which holds by definition of
the product monoid. The case for P (merge-explore e0 e1)
where P e0 and P e1 follows by congruence of ⊕ and its
definition. Finally we need to prove for all xm and xn that P
(point-explore (xm , xn)) which is< fm× fn >(xm , xn)
≡ (fm xm , fn xn) which holds by definition.

We can now prove how explore-endo enables to re-associate
an exploration.

Theorem 5. For any type A, exploration function eA : Explore A,
monoid (M , ε , ⊕), function f : A→ M, and point z : M, we
have eA ε ⊕ f ⊕ z ≡ eA id ◦ (⊕ ◦ f) z.

Proof. By the principle of eA and picking the motive P e to
be ∀ z → e ε ⊕ f ⊕ z ≡ e id ◦ (⊕ ◦ f) z, we

5 It is common to refer as P being the motive for the induction which is
a form of elimination. As Conor McBride writes in [10] “we should give
elimination a motive”.
6 The monoid laws are actually not used for this theorem.

need to show P empty-explore which is ∀ z → ε ⊕ z ≡ z
and follows by monoid law. The case for P (point-explore
x) holds by definition. Finally we need to prove the case for
P (merge-explore e0 e1) where P e0 and P e1 hold. By
definition it amounts to proving that for all z, (e0 ε ⊕ f ⊕
e1 ε ⊕ f) ⊕ z equals e0 id ◦ (⊕ ◦ f) (e1 id ◦
(⊕ ◦ f) z). The assumption P e1 can be used on z and P e0
can be used on e1 ε ⊕ f ⊕ z. Using the associativity and con-
gruence of ⊕ the proof is complete.

Corollary 2. For any type A, exploration function eA : Explore
A, then any exploration can be re-associated using the monoid
on endomorphisms, namely for all monoid (M , ε , ⊕) and
function f : A → M, we have eA ε ⊕ f ≡ explore-endo
eA ε ⊕ f.

Proof. Use Theorem 5 with z being ε and conclude by monoid
laws.

Exploration functions can be concretised to binary trees7. Bi-
nary trees can be explored using the fold function for trees. This
allows us to treat exploration functions as data.

data Tree (A : ‹) : ‹ where
empty : Tree A
leaf : A → Tree A
fork : (l r : Tree A) → Tree A

{- Fold over binary trees: -}
foldMapT : ∀ {A} → Tree A → Explore A
foldMapT empty = empty-explore
foldMapT (leaf x) = point-explore x
foldMapT (fork l r) = merge-explore (foldMapT l)

(foldMapT r)

toTree : ∀ {A} → Explore A → Tree A
toTree eA = eA empty fork leaf

Theorem 6. For any type A, exploration function eA : Explore A,
monoid (M , ε , ⊕) and function f : A→ M, we have eA ε ⊕
f ≡ foldMapT (toTree eA) ε ⊕ f.

Proof. By the principle of eA and picking the motive to be P e =
e ε ⊕ f ≡ foldMapT (toTree e) ε ⊕ f. All cases are
trivial.

7 Binary trees do not form a monoid with strict equality but our exploration
functions do not require it either.

4. Exploration and dependent types
Big operators over types: Intuitively Σ is the big operator for
] and Π the big operator for × . For any type A and eA :

Explore A, the monoids (‹ , O ,]) and (‹ , 1 , ×)
can be used to compute a type from the explored values of A. We
call these operators Σe and Πe :

Σe : (A → ‹) → ‹

Σe = eA O]

Πe : (A → ‹) → ‹

Πe = eA 1 ×

For any type family B, a value of type Σe B is a composition
of injections (inl/inr) until reaching a value of type B x for
some x : A. Similarly, a value of type Πe B is a tuple of nested
pairs storing a value B x for each x explored.

When all the values of type A are exhaustively and uniquely
explored, then the type operators Σe and Πe are equivalent to Σ A
and Π A respectively. When it is so, Σe and Πe are said to be
adequate Σ-type and Π-type.

Adequate-Σ : ((A → ‹) → ‹) → ‹

Adequate-Σ ΣA = ∀ F → ΣA F ≡ Σ A F

Adequate-Π : ((A → ‹) → ‹) → ‹

Adequate-Π ΠA = ∀ F → ΠA F ≡ Π A F

These type operators (Σe and Πe) can be read logically as
finitary qualifiers (∃ and ∀).

Small scale reflection by exhaustive testing:

Theorem 7. For any type A, exploration function eA : Explore A,
and function f : A → 2, assuming furthermore that the derived
Πe is adequate, then all eA f returns 12 exactly when f returns
12 for all x of type A, namely X (all eA f) ≡ ∀ x → X (f x)
where X maps 2 to ‹ and the function all is defined in Figure 2.

Proof. Since X forms a monoid homomorphism from (2 , 12 ,
∧) to (‹ , 1 , ×) one can distribute this homomorphism

using Theorem 1. Remains to show that Πe eA (X ◦ f) is equal
to ∀ x → X (f x) which holds by adequacy of Πe .

This theorem can be used to provide a generic tool for proofs by
reflection. This tool can be used to prove any statement for which
the domain is amenable to exhaustive testing. The function check!
below takes any predicate f on A expressible as a function to 2,
the second argument is implicit and thus forces the type checker to
normalise the expression all eA f. If this expression normalise
to 02 then the type checker fails to find a term of type O, if it
normalise to 12 then the type checker can apply the η-rule for the
type 1 to establish the existence and uniqueness of the implicit
argument. The function check! then returns a proof that f x is 12
for all x. Internally the function check! uses Theorem 7 in the
forward direction.

check! : ∀ f → {pf : X (all eA f)}
→ (∀ x → X (f x))

As an example of the use of check! we automatically derive
a proof of the distributivity of ∧ over ∨ . One first define the
property as single function over 2, no currying is used here. Then

from the exploration function on 2× 2× 2 one get the check!
which proves the goal by certified exhaustive search.

prop-∧-∨-distr (x , y , z) =
x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z

check-∧-∨-distr : ∀ x y z →
X(x ∧ (y ∨ z) == x ∧ y ∨ x ∧ z)

check-∧-∨-distr x y z =
check! prop-∧-∨-distr (x , y , z)

Similarly, the disjunction is related to Σ-types, but not with a
bi-implication and not an equivalence. Indeed, X(x ∨ y) has at
most one inhabitant while X x] X y has at most two.

Theorem 8. For any type A, exploration function eA : Explore A,
and function f : A → 2, assuming furthermore that the derived
Σe is adequate, then any eA f returns 12 exactly when f returns
12 for some x of type A, namely X (any eA f)↔ ∃ λ x→ X (f
x) where the function any is defined in Figure 2.

Proof. The proof is similar to Theorem 7 except that the monoid
(‹ ,O ,]) is choosen up to bi-implication instead of equality.

4.1 Explorable types are decidable
When working with finite types it is possible to appeal to classical
logic principles. Using exploration functions we can for example
recover decidability for Σ and Π-types. We recall that Dec A is
equivalent A] ¬ A.

Lemma 1. Decidability is provable for types O, 1 and is closed
under sums and products (] , ×).

These proofs are straightforward and as they are available in our
online development, we omit them for concisions.

Let B : A → ‹ be a type family, we call B as a decidable
predicate if and only if B x is decidable for all x : A.

Theorem 9. Let A be a type, eA be an exploration on A, and Πe eA

be adequate. If B is a decidable predicate then Π A B is decidable.

Proof. We start by proving that Πe eA B is decidable. Using in-
duction on eA with motive P e to be Dec (Πe e B). We need to
show that P empty-explore holds, which is Dec 1 and follows
from Lemma 1. We need to show that P (merge-explore e0 e1)
holds assuming P e0 and P e1 , it follows from Dec being closed
under products × . We need to show that P (point-explore x)
holds, which is Dec (B x) which holds since B is a decidable
predicate. Finally one uses the adequacy of Πe eA to conclude the
proof.

Theorem 10. Let A be a type, eA be an exploration on A, and Σe eA

be adequate. If B is a decidable predicate then Σ A B is decidable.

Proof. The proof follows the same structure as for Π-types (Lemma
9), where Dec O is the base case and the merge case uses the fact
that Dec is closed under sums.

Exploring Σ-types: The function explore× in Figure 1 explores
the cartesian product A × B given explorations for A and B. This
construction nicely scales to dependent pairs. To explore Σ A B
one needs a family of explorations for each B x where x has type A.

This implies a single change in comparison to explore×, namely x
is given to exploreB :

exploreΣ : Explore A → (∀ x → Explore (B x))
→ Explore (Σ A B)

exploreΣ exploreA exploreB ε ⊕ f
= exploreA ε ⊕ λ x →

exploreB x ε ⊕ λ y →
f (x , y)

The relational parametricity applies to the definition of exploreΣ.
While not yet fully automated in AGDA, the mechanical aspect of
parametricity is appreciated even when dealing with types and pro-
grams as short as Explore, Σ, and exploreΣ. The definitions
for JΣK, JexploreΣK, and exploreΣP are given in appendix
A.2.

Exploration functions for exploring functions: Exploring a
function type (such as Explore (A → B)), would combine func-
tions f0 f1 . . . fn : A → B using the provided binary op-
erator. Ideally one would combine information about A and B to
explore A → B. While we found no way to directly exhaustively
explore functions there is an attractive workaround: one can use
type equivalences on functions to incrementally build such an ex-
ploration function. Namely, one decomposes the domain with type
equivalences towards simpler types we can explore:

(A] B)→ C ' (A→ C)×(B→ C)
(A×B)→ C ' A→ (B→ C)

These type equivalences require function extensionality, making
this one more case where homotopy type theory can help. While not
required to define the exploration functions themselves, the proofs
of these type equivalences are required to prove their adequacy.

5. Sums, products and type equivalences
5.1 Adequate sums and products
Our original motivation was to work with summation functions as
a way to compute and reason about uniform discrete probability
distributions. Using an exploration function, we can derive a sum-
mation function which has stronger properties (the free-theorems
discussed before), we can then sum the events over all the values of
a given type. Exploring types more than containers is illustrated in
Section 5.2 where we model probabilistic functions as determinis-
tic functions with an extra argument for the randomness.

In this part we develop adequate summations and products and
some properties they enjoy. In Section 5.2 we build on summations
and show how our model for probabilistic functions yield uniform
and discrete probability distributions. In particular probabilistic
equivalence is equivalent to type equivalence in Corollary 4. This
corollary follows from Theorem 12 and Theorem 16 developed in
this section.

How can we ensure that we have a correct summation function?
We need to ensure that an adequate summation function is going
to count every value exactly once (i.e an adequate summation
function is not allowed to forget a value or over-count it). In order
to guarantee this we use a strong correspondence between the
sizes8 of types in type theory and the act of summing. We use this
correspondence as a specification for the summation functions that
fully explores a type. It boils down to the observation that Σ A F is
acting as a big operator for disjoint union of all F x where x is of
type A. Therefore the size of a Σ-type is the summation of the sizes
over the type family:] (Fin n) ≡ n and] (Σ A F) ≡

∑
x∈A] (F x).

8 We use the notion of size only as an informal guide.

Using these size relations we can show that sumA a summation
function is correct, assuming a particular type equivalence exists.
Since type equivalences preserve sizes, we argue as follows.

sumA f ≡]
(
Fin (sumA f)

)
≡] (Σ A (Fin ◦ f))

≡
∑

x∈A] (Fin (f x)) ≡
∑

x∈A f x

Definition 3. A function sumA for a type A is said to be an adequate
sum if for all functions f there is an equivalence between Σ A (Fin
◦ f) and Fin (sumA f). In AGDA: Adequate-sum sumA = ∀ f→
Σ A (Fin ◦ f) ' Fin (sumA f).

This correspondence can be further extended to products, as Π-
types can be seen as the big operator for products. The correctness
for product functions can be defined using correspondence similar
to the one for summation functions:

prodA f ≡]
(
Fin (prodA f)

)
≡] (Π A (Fin ◦ f))

≡
∏

x∈A] (Fin (f x)) ≡
∏

x∈A f x

Definition 4. A function prodA for a type A is said to be an
adequate product if for all f there is an equivalence between
Π A (Fin ◦ f) and Fin (prodA f).
In AGDA: Adequate-product prodA = ∀ f→ Π A (Fin ◦ f) '
Fin (prodA f).

Our first use of adequacy for sums and products is to prove the
following equation:

∀(f ∈ (A×B)→ N),
∏
x∈A

∑
y∈B

f (x,y) ≡
∑

g∈(A→B)

∏
x∈A

f (x,g(x))

At first we prove a more general result, where B is a family
indexed by A and thus dependent functions and dependent pairs are
required. The non-dependent version is given as a corollary.

Theorem 11. Let prodA be an adequate product function for the
type A. Let sumA B be an adequate summation function for a type
Π A B. Finally let sumB be a family over A of summation functions
on the type B. Then for all function f : (x : A) → B x → N,
prodA (λ x → sumB x (λ y → f x y)) is equal to
sumA B (λ g → prodA (λ x → f x (g x))).

Proof. Using the adequacy properties together with the type equiv-
alence between Π A (λ x → Σ (B x) λ y → C x y) and Σ (Π
A B) λ f → Π A λ x → C x (f x). The logical interpretation of
the forward direction is usually known as the dependent axiom of
choice. Categorically a map into a product (Σ-type) is a product of
maps.

Corollary 3. Let sumB and sumA B be adequate summation func-
tions for a type B and A→ B respectively. Furthermore let prodA

be an adequate product function for the type A. Then for all func-
tion f : A → B → N, prodA (λ x→ sumB (λ y→ f x y)) is
equal to sumA B (λ g→ prodA (λ x→ f x (g x))).

Proof. Since non-dependent functions are a particular case of de-
pendent functions one can directly use Theorem 11.

Using this specification we get a correctness criterion for sum-
mation functions and we can use type equivalences to derive results
about our summation functions. For instance, summation functions
are invariant under equivalences.

Lemma 2. Having an adequate summation function sum over type
A, with a derived size size : N, it is possible to construct an
equivalence Fin size ' A.

Proof. By sum being adequate summation and the type equivalence
Σ A (λ → Fin 1) ' A.

Lemma 3. Let A0 , A1 be types, and A= be a type identity : A0 ≡
A1 . Let B1 , B1 be type families on A0 and A1 respectively. Let B= a
family over A0 of equivalences between B0 and B1 . The type of B=
is (x : A0) → B0 x ≡ B1 ((coe A=) x) and coe A= is the
identity transport along A=. It is then possible to construct a path
Σ A0 B0 ≡ Σ A1 B1 .

Proof. By based path induction on A= one has only to con-
sider the case for reflexivity on the base point A0 . Notice that
the family B1 now is on A0 , and that B= is now convertible to
(x : A0) → B0 x ≡ B1 x since coe computes to the identity
function on the reflexivity path. It remains to show a path between
Σ A0 B0 and Σ A1 B1 , which amounts to first use function ex-
tensionality on B= to get a path B0 ≡ B1 , which can then be applied
to the context Σ A0 .

Lemma 4. Let A0 , A1 be types, and A' be a type equivalence :
A0 ' A1 . Let B1 , B1 be type families on A0 and A1 respectively.
Let B= a family over A0 of paths between B0 and B1 . The type
of B= is (x : A0) → B0 x ≡ B1 (·→ A' x) and ·→ A'
projects the A0 → A1 function. It is then possible to construct an
equivalence Σ A0 B0 ' Σ A1 B1 .

Proof. The equivalence A' is transformed into a path using the uni-
valence axiom ua. To use the previous Lemma 3 it remains to show
a family of paths: ∀ x → B0 x ≡ B1 (coe (ua A') x). Con-
sidering such an x : A0 we first use the path (B=) x. To show
a path between B1 (·→ A' x) and B1 (coe (ua A') x) we
apply the context B1 . Finally we use the β-rule for the univalence
axiom which gives a path between ·→ A' x and coe (ua A') x,
which concludes the proof.

Theorem 12. Given two adequate summation functions sumA and
sumB for types A and B respectively, for all equivalences π : A ' B
and functions f : B→ N the summation sumA (f ◦ π) is equal to
the summation sumB f.

Proof. Using adequacy of the summation functions and the Lemma 2
and Lemma 4 we get an equivalence thm : Fin (sumA (f ◦ π))'
Fin (sumB f). Since Fin is injective (i.e Fin m' Fin n→ m≡ n)
the proof is complete.

Fin (sumA (f ◦ π)) Fin (sumB f)

Σ A (Fin ◦ f ◦ π) Σ B (Fin ◦ f)

thm

lemma 4

sumA adequate sumB adequate

Lemma 5. Given two summation functions sumA and sumB for type
A and type B, if both are adequate they satisfy the commutation
property that sumA (λ a→ sumB (λ b→ f (a , b))) is equal to
sumB (λ b→ sumA (λ a→ f (a , b))).

Proof. By adequacy of sumA and sumB and the type equivalence
between Σ A λ x → Σ B λ y → C x y and
Σ B λ y → Σ A λ x → C x y.

Counting uniquely: We prove that all values are summed only
once when using an adequate summation function sum.

Theorem 13. Assume for a type A that we have a boolean equality
test == such that, for all x and y of type A, the type (x == y)
≡ 12 is equivalent to x ≡ y. Furthermore, assume an adequate
summation function sum, from which we derive a counting function
count. Then, for all x, the equation count (λ y→ x == y) ≡ 1
holds.

Proof. Using the fact that sum is an adequate summation function
together with the type equivalence Σ A (λ y → x ≡ y) ' 1.

Lemma 6. The type family Fin is a monoid homomorphism from
(N , 0 , +) to (‹ , O ,]).

Proof. By standard type equivalences, Fin 0'O and for all m and
n, then Fin (m + n) ' (Fin m] Fin n).

Theorem 14. For any type A and exploration function eA :
Explore A such that Σe eA is an adequate Σ-type then sum eA

is an adequate summation function.

Proof. To give an equivalence Fin (eA 0 + f)' Σ A (Fin ◦ f),
instantiate Adequate-Σ with F being Fin ◦ f to get an equivalence
eA O] (Fin ◦ f)' Σ A (Fin ◦ f). By Theorem 1 and Lemma
6 one get Fin (eA 0 + f) ' eA O] (Fin ◦ f) and by
transitivity the sought after equivalence is reached.

Lemma 7. The type family Fin is a monoid homomorphism from
(N , 1 , *) to (‹ , 1 , ×).

Proof. By standard type equivalences, Fin 1 ' 1 and for all m and
n, then Fin (m * n) ' (Fin m×Fin n).

Theorem 15. For any type A and exploration function eA :
Explore A such that Πe eA is an adequate Π-type then product
eA is an adequate product.

Proof. Proved in a similar way as theorem 14 using Lemma 7.

5.2 Probabilistic functions, deterministically
While a deterministic function is a fixed mapping from elements of
a domain A to elements of a codomain B, a probabilistic function
carries out a probabilistic process to map the elements of A to the
elements of B.

This extra capability of a probabilistic function p can be mod-
eled by a deterministic function f receiving one extra argument r
uniformly drawn from a set R. The argument r represents the ran-
domness required by the probabilistic process. When the function f
is correctly chosen the following holds for all arguments x and re-
sult y: Pr[r ← R;f (x,r) ≡ y] ≡ Pr[p(x) ≡ y].

In this part we focus on a finite random supplyR or equivalently
a finite universe of events Ω. With this setting one can reason about
uniform discrete probabilities using exploration functions and type
equivalences. For a probabilistic function which needs to toss a
coin, roll a six-sided die and generate a 128-bits key, the type R
can be any type equivalent to (2 × D6 × Bits 128).

Lemma 8. Assume an adequate summation function sum over a
type R and let count be the derived counting function. Let f , g :
R→ 2 such that count f≡ count g, then it is possible to construct
an equivalence between Σ R (λ x→ f x ≡ 12×g x ≡ 02) and Σ
R (λ x→ f x ≡ 02×g x ≡ 12).

Proof. By proving that count (λ x→ f x ∧ not (g x))≡ count
(λ x→ not (f x) ∧ g x) adequacy of sum gives the equivalence.
The above equality holds since count f ≡ count (λ x→ f x ∧
g x) + count (λ x → f x ∧ not (g x)) and similarly count g
≡ count (λ x→ f x ∧ g x) + count (λ x→ not (f x) ∧ g x)
therefore since count f≡ count g by assumption we can conclude
by canceling count (λ x→ f x ∧ g x).

Lemma 9. Given any type R, two functions f , g : R→ 2 and an
equivalence e0 : Σ R (λ x→ f x≡ 12×g x≡ 02)' Σ R (λ x→
f x ≡ 02×g x ≡ 12), it is possible to construct an equivalencee1
: R ' R such that for all x, f x ≡ g (e1 x) holds.

Proof. The equivalence e1 will be its self inverse. If f x ≡ g x
it will be the identity, otherwise it will be either e0 or e0

- 1

depending on which case we are in. This relies on e0 (e1 x) ≡
x and e1 (e0 x) ≡ x which follows from e0 being an equivalence.
Furthermore the equivalence have been constructed so that f x≡ g
(e1 x) holds.

Theorem 16. Assume an adequate summation function sum over
a type R and let count be the derived counting function. For two
events f , g : R→ 2, such that f and g have the same probability
of occuring i.e count f ≡ count g, it is possible to construct an
equivalence π : R ' R such that f x ≡ g (π x).

Proof. By Lemma 8 and Lemma 9.

Corollary 4. Two events f g : R→ 2 have the same probability of
occurring if and only if there is a type equivalence π : R ' R such
that f is equal to g ◦ π.

Proof. Combining Theorem 12 and Theorem 16.

Corollary 5. Uniform distributions: For any type A and any value x
of type A, the likelihood of a random sample y of type A being equal
to x is Pr[x ≡ y] ≡ 1

](A)
.

Proof. Follows directly from Theorem 13.

This corollary implies that our definition of random sampling
corresponds to a uniform sampling. Uniform distributions are those
that attribute the same probability to all values of the type used as
the universe of events. For finite types this amounts to saying that
each value has to be counted exactly once.

Lemma 10. For any type A, and exploration function eA :
Explore A, two events f , g : A → 2, we have count eA f +
count eA g ≡ count eA (λ x→ f x ∧ g x) + count eA (λ x→
f x ∨ g x) where count is defined in Figure 2.

Proof. By Theorem 3 we only need to show9 that for all x, f x + g
x ≡ (f x ∧ g x) + (f x ∨ g x) which is trivial.

Examples of using type equivalences for summations: When
reasoning about probabilities, one establishes the relation between
the probabilities of two processes. A deduction step either approx-
imates (weakens, loosens) this relation or keeps it unchanged. In
the latter case the probability stays the same because of a symme-
try within the space of events. These symmetries can be exploited
by showing the event spaces to be equivalent as types.

Examples from cryptography: Internally an encryption scheme
often works using group structures. Assuming an arbitrary group
(G , 0 , ⊕ , -), the security of the system often relies on the
fact that, for any x, adding a random value to x will still appear
random. The standard example is one time pad where encryption
is just bitwise XOR of the key and the message. If one can show
that λ x → x ⊕ m is an equivalence for some m then adding a
random value to m is indistinguishable from taking a random value.
This indstinguishability is proven by showing that, for all observers
O : G→ N, sum (λ x→ O(x⊕ m)) is equal to sum (λ x→ O(x)),
due to Theorem 12. In particular the observer learns nothing of m,
which is why this provides security.

One case where this reasoning is used is when proving the
security of a stream cipher. A stream cipher assumes a pseudo
random number generator PRG which is a probabilistic function
that will output random looking data. Compared to one time pad,
the main benefit of a stream cipher is that the size of randomness
required is less than the size of the output. The encryption of a
stream cipher is PRG(key) XOR m where m is the message: one
usually argues that this is secure because PRG(key) is supposed
to be indistinguishable from random.

Another example is in the proof of the ElGamal encryption
system which works in a multiplicative group instead. In one part
of the proof the adversary gets a ciphertext c = (gy , gz • m)
where both gy and gz can be considered to be random. Hence the
adversary will not learn anything about the message m.

9 Here the coercion between 2 and N is silent.

6. Discussion
6.1 Related work
Free Theorems Involving Type Constructor Classes:
J. Voigtländer[15] shows how to extend HASKELL relational para-
metricity to constructor classes. In particular one application is
to make the use of difference lists transparent. He is defining
a ListLike type class which is presented differently but equiva-
lent to our three parameters for explorations. His Theorem 6 corre-
sponds to our Corollary 2, his Theorem 7 is similar to our Theorem
1. These two theorems are both fully formalised in development.

The Big Operators theory in Isabelle: Another development of
big operators can be found in Isabelle [11]. This library uses an
axiomatization of finite sets and a fold function operating on these
sets. Since Isabelle/HOL is based on classical logic, the fold func-
tions are, in contrast to our exploration functions, not constructive.
Because of this we can’t directly use the results from this library.

Canonical big operators: The work on the bigops library [3]
for COQ has a similar purpose as our exploration functions. This
library focuses on the properties one can derive about folds over
lists. These folds also allow one to filter out undesired values:

reduceBig : ∀ {U A : ‹}(⊕ : U → U → U)(ε : U)
(l : List A)(p : A → 2)(f : A → U)

→ U
reduceBig ⊕ ε l p f =

foldr (λ i x → if p i then f i ⊕ x else x) ε l

By rearranging the types to put the predicate and the list as the
first argument we can see that this is indeed a way to construct
an exploration function, (although we abstract out the filtering us-
ing filter-explore from Section 2.2). Another way of defin-
ing reduceBig would be reduceBig p l = filter-explore p
(foldMapL l).

In bigops [3], the type finType is characterised by a list
together with a proof that for all element x of that list, x occurs
only once, i.e. count (== x) xs ≡ 1. Theorem 13 states that
every adequate exploration satisfies this criterion.

The ALEA library: The COQ library ALEA [1] is used to rea-
son about probabilities. Instead of summations they extract mea-
sures from a monad called Distr. The measure is extracted
with the function µ : Distr A → (A → [0,1]) →m [0,1].
Here [0,1] represents the real numbers between 0.0 and 1.0,
and →m represents monotonic functions. For a µ function to be
a probability distribution it needs to be a linear continuous opera-
tion. The type [0,1] had to be partly axiomatised and as such is
not fully computable.

Since we can also sample over finite types in ALEA, we can
embed probabilistic functions from our system to the ALEA monad
(Distr). To do so we use the underlying deterministic function.
For instance, consider f : R → 2. Once embedded in ALEA,
we conjecture that the following relation between the probability
distribution and our summation functions sumR f holds10:

embed : (R → 2) → Distr 2

embed f = do r ← randR ; return (f r)
embedding : ∀ f → µ (embed f) 2B[0,1] ≡ sumR f / #R

10 We silently coerce→m to→ and 2B[0,1] is measuring the likelihood of
getting 12.

6.2 Future work
Beyond Foldable: Traversable and lenses The type class
Foldable is hardly the only one with polymorphic methods. For
instance the type class Traversable has a similar structure. While
it has algebraic laws [7], we conjecture they hold by parametricity
as well. It would be interesting and challenging to formally carry
these results in AGDA.

The lens package [8] is really designed with parametricity in
mind. For instance, the library relies on the fact that a monoid is
exactly a constant applicative functor, or that a functor which is
both covariant and contravariant is necessarily constant. Formal-
ising these constructions should contribute the further design and
development of this kind of library.

Parametricity of higher inductive types: We made the choice to
go towards homotopy oriented type theory. Moreover we manually
implement the parametricity results which avoids the concern on
the combinations with univalence [14]. Still we wonder on the
interactions. Do higher inductive types [9] enjoy free-theorems in
a similar way?

Higher inductive types: When looking at big operators we usu-
ally do not consider the order the elements are applied in to
be of importance. This is reflected in the set-theoretical syntax⊕

x∈A f(x) that we have used so far. However, nothing prevents
us from folding over a non-commutative and non-assocative oper-
ator. The tree type described in section 3 allows us to distinguish
based on the order of elements. To remedy this one can instead use a
higher inductive type [9]. The inductive type of binary trees (Tree)
can be upgraded to a higher inductive type (FreeCMon) where the
laws for commutative monoids are added as extra equalities. This
type FreeCMon corresponds to the free commutative monoid. We
conjecture that the induction on the type FreeCMon corresponds to
a refienment of exploration functions where the operator enjoys a
commutative monoid structure.

data FreeCMon (A : ‹) : ‹ where
η : A → FreeCMon A
ε : FreeCMon A
⊕ : (l r : FreeCMon A) → FreeCMon A

comm : ∀ x y → x ⊕ y ≡ y ⊕ x
assoc : ∀ x y z → (x ⊕ y)⊕ z ≡ x ⊕(y ⊕ z)
neutral : ∀ x → ε ⊕ x ≡ x

6.3 Conclusion
This work presents a way to reason formally about foldMap, or
as we call them, explorations. No algebraic laws are stated for
Foldable but some algebraic properties can be recovered by para-
metricity. We gave a detailed account on how different monoids
or monoid homomorphisms interact with explorations. Addition-
ally all the results present in this paper have been fully mechanised
in AGDA. Dependent types do not only provide a common frame-
work for programs and proofs but also enable new techniques such
as exhaustively exploring a finite type or building a type from an
exploration. We showed how type equivalences can establish the
adequacy for big operators such as Σe , Πe , sum and product. We
made this work as a contribution to the safe use of parametricity
results in functional programming.

References
[1] P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms

in coq. Science of Computer Programming, 74(8):568 – 589, 2009.
[2] J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and depen-

dent types. In Proceedings of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP ’10, pages 345–356,
New York, NY, USA, 2010. ACM.

[3] Y. Bertot, G. Gonthier, S. Ould Biha, and I. Pasca. Canonical big
operators. In O. Mohamed, C. Muñoz, and S. Tahar, editors, Theorem
Proving in Higher Order Logics, volume 5170 of Lecture Notes in
Computer Science, pages 86–101. Springer Berlin Heidelberg, 2008.

[4] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for
random testing of haskell programs. In ACM SIGPLAN Notices, pages
268–279. ACM Press, 2000.

[5] D. Gustafsson and N. Pouillard. crypto-agda, 2012-2015. https:
//github.com/crypto-agda/crypto-agda.

[6] D. Gustafsson and N. Pouillard. crypto-agda, 2013-2015. https:
//github.com/crypto-agda/explore.

[7] M. Jaskelioff and O. Rypacek. An investigation of the laws of traver-
sals. In MSFP, pages 40–49, 2012.

[8] E. A. Kmett. The lens package, 2012-2014. https://github.com/
ekmett/lens.

[9] P. Lumsdaine and M. Shulman. Higher inductive types. 2013. In
preparation.

[10] C. Mcbride. Elimination with a motive. In Types for Proofs and
Programs (Proceedings of the International Workshop, TYPES00),
volume 2277 of LNCS, pages 197–216. Springer-Verlag, 2002.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel. Theory big operators.
http://isabelle.in.tum.de/library/HOL/HOL/Big_
Operators.html.

[12] U. Norell. Towards a practical programming language based on
dependent type theory. PhD thesis, Department of Computer Sci-
ence and Engineering, Chalmers University of Technology, SE-412
96 Göteborg, Sweden, September 2007.

[13] J. C. Reynolds. Types, abstraction and parametric polymorphism. In
Information Processing 83, pages 513–523. Elsevier Science, 1983.

[14] T. Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Aug. 2013.

[15] J. Voigtländer. Free theorems involving type constructor classes.
In A. Tolmach, editor, 14th International Conference on Functional
Programming, Edinburgh, Scotland, Proceedings, volume 44 of SIG-
PLAN Notices, pages 173–184. ACM Press, Sept. 2009.

[16] P. Wadler. Theorems for free! In Conference on Functional Program-
ming Languages and Computer Architecture (FPCA), pages 347–359,
Sept. 1989.

A. Agda development, selected parts
A.1 Listing of Type Equivalences
(‹ , (× , 1) , (] , O)) is a commutative semiring up to
equivalence.

Fin-inj : Fin m ' Fin n → m ≡ n

Fin-0-O : Fin 0 ' O
Fin-1-1 : Fin 1 ' 1

Fin-2-2 : Fin 2 ' 2

Fin-+-] : Fin (m + n) ' Fin m] Fin n
Fin-*-× : Fin (m * n) ' Fin m × Fin n
Fin-Σ : Fin (sumA f) ' Σ A (Fin ◦ f)
Fin-Π : Fin (prodA f) ' Π A (Fin ◦ f)

Σ-1 : Σ 1 F ' F 01
Σ-2 : Σ 2 F ' F 02] F 12
Σ-] : Σ (A] B) F

' Σ A (F ◦ inl)] Σ B (F ◦ inr)
Σ-Σ : Σ (Σ A B) F

' Σ A (λ a → Σ (B a) (λ b → F (a , b)))
Σ-≡ : (x : A) → Σ A (≡ x) ' 1

Σ-swp : Σ A λ x → Σ B λ y → C x y
' Σ B λ y → Σ A λ x → C x y

Π-O : Π O A ' 1

Π-1 : Π 1 A ' A 01
Π-2 : Π 2 A ' A 02 × A 12
Π-] : Π (A] B) C ' Π A (C ◦ inl) × Π B (C ◦ inr)
Π-Σ : Π (Σ A B) C ' (x : A) (y : B x) → C (x , y)
Π-swp : Π A λ x → Π B λ y → C x y

' Π B λ y → Π A λ x → C x y

dep-AC : (x : A) → Σ (B x) λ y → C x y
' Σ (Π A B) λ f → (x : A) → C x (f x)

A.2 Exploring Σ-types

record JΣK
{A1 A2 : ‹}
{B1 : A1 → ‹}{B2 : A2 → ‹}
(Ar : A1 → A2 → ‹)
(Br : (Ar J→K J‹K) B1 B2)
(p1 : Σ A1 B1) (p2 : Σ A2 B2) : ‹ where

constructor J,K
field

JfstK : Ar (fst p1) (fst p2)
JsndK : Br JfstK (snd p1) (snd p2)

module
{A0 : ‹} {A1 : ‹} {Ar : J‹K A0 A1}
{B0 : A0 → ‹} {B1 : A1 → ‹}
{Br : (Ar J→K J‹K) B0 B1}
{eA 0 : Explore A0}
{eA 1 : Explore A1}
(eA r : JExploreK Ar eA 0 eA 1)
{eB 0 : ∀ x → Explore (B0 x)}
{eB 1 : ∀ x → Explore (B1 x)}
(eB r : ∀ {x0 x1}(xr : Ar x0 x1) →

JExploreK (Br x) (eB 0 x0) (eB 1 x1))
where

JexploreΣK : JExploreK (JΣK Ar Br)
(exploreΣ eA 0 eB 0)
(exploreΣ eA 1 eB 1)

JexploreΣK Mr εr ⊕r fr =
eA r Mr εr ⊕r λ xr →
eB r xr Mr εr ⊕r λ yr →
fr (xr J,K yr)

module
{A : ‹}
{B : A → ‹}
{eA : Explore A} {eB : ∀ x → Explore (B x)}
(eA P : ExploreP eA)
(eB P : ∀ x → ExploreP (eB x))

where
exploreΣP : ExploreP (exploreΣ eA eB)
exploreΣP eA P eB P P εP ⊕P fP =
PeA (λ e → P (λ → e)) εP ⊕P λ x →
PeB x (λ e → P (λ → e)) εP ⊕P λ y →
fP (x , y)

