
Metaprogramming Tutorial:
OCaml and Template Haskell

Jake Donham and Nicolas Pouillard

jake@donham.org nicolas.pouillard@gmail.com

CUFP 2010, Baltimore

1

Static metaprogramming

What is it?

compile-time code generation

transformation of syntax trees

What’s it good for?

for convenience (generate boilerplate or type-derived functions)

for speed (generate first-order functions from higher-order templates)

for EDSLs (embedded regexps or SQL)

for language extensions

2

Static metaprogramming in OCaml and Haskell

Camlp4: preprocessing front-end to the OCaml compiler, AST
transformations written as Camlp4 plugins

Template Haskell: compiler extensions to GHC, AST transformations
embedded in Haskell code

3

Small example: map over a tuple

Avoid boilerplate of mapping over elements of a tuple

in OCaml,
Tuple.map f (a, b, c, d)

is transformed to
(f a, f b, f c, f d)

in Haskell,
import qualified Data.Tuple.TH as T

$(T.map 4) f (a,b,c,d)

is transformed to
(f a, f b, f c, f d)

4

Camlp4

5

ASTs in Camlp4:

type expr = ... and patt = ... and

ctyp = ... and str_item = ... and ...

e.g. ExInt for an int expr, TySum for a sum type

see Camlp4Ast.partial.ml for full def

somewhat loose—easy to make invalid AST

converted to OCaml AST; see Camlp4Ast2OCamlAst.ml for errors

6

OCaml quotations:

a way to work with the AST using concrete syntax

you can always fall back to AST constructors!

e.g. <:expr< 1, 2 >> becomes
ExTup (_, (ExCom (_, (ExInt (_, "1")),

(ExInt (_, "2")))))

<:ctyp< int * int >> becomes
TyTup (_, (TySta (_, (TyId (_, (IdLid (_, "int")))),

(TyId (_, (IdLid (_, "int")))))))

antiquotations: <:expr< 1, x >>, <:expr< 1, $‘int:x$ >>

see doc page of quotations / antiquotations

7

Working with the AST:

Ast.map

object that maps over AST

method for each syntactic class

override to operate on AST

locations, Ast.Loc.t

stores filename and position

must provide one to construct AST nodes

quotations use _loc by default

Loc.ghost

Ast.loc_of_expr e

<:expr@_loc< >>

<:expr@here< >>

8

Revised syntax:

alternative concrete syntax for OCaml

fixes some infelicities in OCaml syntax

makes antiquotation easier (gives more context, bugs with original
syntax)

list t instead of t list

match [patt -> expr | ...] instead of
match patt -> expr | ...

True instead of true

see doc page for full details

9

Running Camlp4:

camlp4of [module.cmo]* [file.ml]

show loaded modules: -loaded-modules

print original syntax: -printer o

show AST for debugging: -filter Camlp4AstLifter

take input from command line: -str [input]

Ex. camlp4of -printer o -filter Camlp4AstLifter \

-str ’type t = Foo’

10

Debugging:

don’t know what AST to use?

run example through camlp4of to see what AST is parsed

quotations / antiquotations don’t work?

read parsers :(to see why (Camlp4OCamlRevisedParser.ml,
Camlp4OCamlParser.ml)

fall back to AST constructors

errors converting Camlp4 to OCaml AST?

read converter to see why (Camlp4Ast2OCamlAst.ml)

use -filter Camlp4AstLifter to see what you’re generating

11

Template Haskell

12

ASTs in Template Haskell

TH exposes data-types for expressions, patterns, declarations, types... (Exp,
Pat, Dec, Type).

exE :: Exp

exE = ListE [_42, VarE ’succ ‘AppE‘ _42]

where _42 = LitE (IntegerL 42)

13

Smart constructors, new names, and the Q monad

TH also exposes smart constructors for all constructors, to build programs
in the Q monad.

apE :: ExpQ

apE = do x <- qNewName "x"

y <- qNewName "y"

lamE [varP x, varP y] (varE x ‘appE‘ varE y)

14

Generic quotations in Template Haskell

TH has a general mechanism for quotations.

[$sql| SELECT * FROM ‘users‘ |]

[$regex| (a|b)*b*(a|b)* |]

[$xml| <person><name>Foo</name><age>42</age></person> |]

15

Haskell quotations in TH

TH has a general mechanism for quotations.

[e| \f g x -> f (g x) |]

[t| Int -> (Bool, Char) |]

[d| data Foo = A | B | C |]

16

... and antiquotions for those

Using $(...) one can splice expressions, types... into one other.

[e| case $(a) of { [] -> $(b) ; x:xs -> $(c) x xs } |]

[t| Int -> ($(t), Char) |]

[d| data Foo = A | B $(t) | C |]

17

Exercises

18

Tuple map

Implement the tuple map syntax from the example.

19

Zipper types

The ”zipper” representation of a value of type t is a subtree of type t, and
a context of type t’, where t’ is derived systematically from t. (see Huet)

A zipper type has:

a Top arm

for each arm containing t, an arm for each occurrence of t with that
occurrence replaced with t’

For example:
type t = Leaf | Tree of t * t

has zipper type
type t’ = Top | Tree0 of t’ * t | Tree1 of t * t’

Implement a generator for zipper types.

20

Implementing quotations/antiquotations in Camlp4

Quotations are implemented in several phases:

quotation is lexed to a QUOTATION token containing tag and body as
strings

expander for tag is looked up according to parse context (e.g. expr vs.
patt)

expander parses string to quotation AST with FooAnt nodes for
antiquotations, containing tag and body

expander lifts quotation AST to Camlp4 AST according to parse
context

expander parses antiquotation nodes as OCaml and applies conversions
according to tag

21

JSON quotations in OCaml

We can define quotations for JSON:

<:json< [1, 2, 3] >>

<:json< { "foo" : true, "bar" : 17 } >>

And antiquotations:

<:json< [1, $int:x$, 3] >>

<:json< { "foo" : $bool:b$, "bar" : 17 } >>

<:json< [1, $list:y$, 3] >>

22

JSON quotations in Haskell

We can define quotations for JSON:

[$json| [1, 2, 3] |]

[$json| { "foo" : true, "bar" : 17 } |]

And antiquotations:

[$json| [1, $(js x), 3] |]

[$json| { "foo" : $(js b), "bar" : 17 } |]

[$json| [1, $(js y), 3] |]

Implement JSON quotations and antiquotations.

23

