Not So Fresh ML

Nicolas Pouillard and François Pottier

{Nicolas.Pouillard,Francois.Pottier}@inria.fr

CANS Seminar, 2009

Nicolas Pouillard and François Pottier

Towards safer and more expressive languages for meta-programming

Nicolas Pouillard and François Pottier

Program representation should stay well-typed and well-scoped

Pursuing the work on $\rm FRESHML$

- $\bullet~\ensuremath{\mathsf{Inspired}}$ from $\ensuremath{\mathsf{FRESHML}}$
- $\bullet~\ensuremath{\mathsf{pure}}\xspace$ FreshML for its safety
- C α ml for its expressiveness

A taste of FreshML/C α ml

Nicolas Pouillard and François Pottier

```
data Term

= Var Atom

| App Term Term

| Lam < Atom × neutral Ty × inner Term >

| Let < Atom × outer Term × inner Term >
```

Capture avoiding substitution

Computing the size of a term

size :: Term
$$\rightarrow$$
 Int
size (Var _) = 1
size (App t u) = 1 + size t + size u
size (Lam<_,,,t>) = 3 + size t
size (Let<_,t,u>) = 3 + size t + size u

FreshML considered

FreshML considered too fresh!

Freshening is useless while:

• Computing the size of a term

- Computing the size of a term
- Computing free variables

- Computing the size of a term
- Computing free variables
- Typing some languages

- Computing the size of a term
- Computing free variables
- Typing some languages
- Counting occurrences of some variable

- Computing the size of a term
- Computing free variables
- Typing some languages
- Counting occurrences of some variable
- Substituting closed terms for variables

- Computing the size of a term
- Computing free variables
- Typing some languages
- Counting occurrences of some variable
- Substituting closed terms for variables
- Deciding α -equivalence

Freshening is useless while:

- Computing the size of a term
- Computing free variables
- Typing some languages
- Counting occurrences of some variable
- Substituting closed terms for variables
- Deciding α -equivalence

Θ ...

To freshen or not to freshen?

\bullet While ${\rm FreshML}$ implicitly freshen

To freshen or not to freshen?

- \bullet While ${\rm FreshML}$ implicitly freshen
- This system allows both non-freshening and freshening openings

To freshen or not to freshen?

- \bullet While ${\rm FreshML}$ implicitly freshen
- This system allows both non-freshening and freshening openings
- However we will only the non-freshening part

World-index types for atoms

Nicolas Pouillard and François Pottier

World-index types for atoms

let x = x in x

Nicolas Pouillard and François Pottier

Not So Fresh ML

CANS Seminar, 2009 12

Let's classify atoms by a world they live in

The type of atoms is now indexed by a world

type Atom α

Let's classify atoms by a world they live in

The type of atoms is now indexed by a world

type Atom α

Equality is homogeneous and prevents mixing worlds

 $(\equiv)_{\mathsf{Atom}} :: \forall \ \alpha. \ \mathsf{Atom} \ \alpha \ \rightarrow \ \mathsf{Atom} \ \alpha \ \rightarrow \ \mathsf{Bool}$

```
data Term

= Var Atom

| App Term Term

| Lam < Atom × neutral Ty × inner Term >

| Let < Atom × outer Term × inner Term >
```

```
data Term outer
= Var (Atom outer)
| App (Term outer) (Term outer)
| ∃inner. Lam (Atom inner) Ty (Term inner)
| ∃inner. Let (Atom inner) (Term outer) (Term inner)
```

data Term
$$\alpha$$

= Var (Atom α)
| App (Term α) (Term α)
| $\exists \beta$. Lam (Atom β) Ty (Term β)
| $\exists \beta$. Let (Atom β) (Term α) (Term β)

Worlds are closely related to each other

The type of (oriented) links between worlds

type $\beta \triangleright \alpha$

Worlds are closely related to each other

The type of (oriented) links between worlds

type $\beta \ \rhd \ \alpha$

Links holds the set of atoms as a frontier

 $\alpha \stackrel{(\not\in S)}{\vartriangleright} \beta$

Worlds are closely related to each other

The type of (oriented) links between worlds

type $\beta \vartriangleright \alpha$

Links holds the set of atoms as a frontier

 $\alpha \stackrel{(\not\in S)}{\vartriangleright} \beta$

Links are supposed to be invisible/inferred!

Nicolas Pouillard and François Pottier

data Term
$$\alpha$$

= Var (Atom α)
| App (Term α) (Term α)
| $\exists \beta$. Lam (Atom β) Ty (Term β)
| $\exists \beta$. Let (Atom β) (Term α) (Term β)

data Term
$$\alpha$$

= Var (Atom α)
| App (Term α) (Term α)
| $\exists \beta$. Lam ($\beta \triangleright \alpha$) (Atom β) Ty (Term β)
| $\exists \beta$. Let ($\beta \triangleright \alpha$) (Atom β) (Term α) (Term β)

Link operations

Identity link

 $\mathsf{id}_{\mathsf{Link}} \, :: \, \forall \ \alpha. \ \alpha \ \rhd \ \alpha$

Link operations

Identity link

 $\mathsf{id}_{\mathsf{Link}} :: \forall \alpha. \alpha \rhd \alpha$

Link composition

$$(\circ)_{\mathsf{Link}} :: \forall \ \alpha \ \beta \ \gamma. \ (\beta \ \rhd \ \gamma) \ \to \ (\alpha \ \rhd \ \beta) \ \to \ (\alpha \ \rhd \ \gamma)$$

Link operations

Identity link

 $\mathsf{id}_{\mathsf{Link}} :: \forall \alpha. \alpha \rhd \alpha$

Link composition

$$(\circ)_{\mathsf{Link}} :: \forall \ \alpha \ \beta \ \gamma. \ (\beta \ \rhd \ \gamma) \rightarrow (\alpha \ \rhd \ \beta) \rightarrow (\alpha \ \rhd \ \gamma)$$

Atomic link

atomic_{Link} :: $\forall \alpha$. Atom $\alpha \rightarrow (\alpha \rhd \alpha)$

Nicolas Pouillard and François Pottier

Casts to walk through links

Atomic casts

$\mathsf{cast}_{\mathsf{Atom}} :: \forall \ \alpha \ \beta. \ (\beta \ \triangleright \ \alpha) \rightarrow (\mathsf{Atom} \ \beta \rightarrow \mathsf{Atom} \ \alpha)$

Nicolas Pouillard and François Pottier
Casts to walk through links

Atomic casts

 $\mathsf{cast}_{\mathsf{Atom}} :: \forall \ \alpha \ \beta. \ (\beta \ \triangleright \ \alpha) \rightarrow (\mathsf{Atom} \ \beta \rightarrow \mathsf{Atom} \ \alpha)$

Generalized casts

 $\mathsf{cast}_{\mathsf{f}} :: \forall \ \alpha \ \beta \ \mathsf{f}. \ (\beta \ \triangleright \ \alpha) \rightarrow (\mathsf{f} \ \beta \rightarrow \mathsf{f} \ \alpha)$

Casts to walk through links

Atomic casts

$$\mathsf{cast}_{\mathsf{Atom}} :: \forall \ \alpha \ \beta. \ (\beta \ \triangleright \ \alpha) \rightarrow (\mathsf{Atom} \ \beta \rightarrow \mathsf{Atom} \ \alpha)$$

Generalized casts

$$\mathsf{cast}_{\mathsf{f}} :: \forall \ \alpha \ \beta \ \mathsf{f}. \ (\beta \ \triangleright \ \alpha) \rightarrow (\mathsf{f} \ \beta \rightarrow \mathsf{f} \ \alpha)$$

Cast implies proof obligations or dynamic checks!

Nicolas Pouillard and François Pottier

Atom abstraction as existential quantification

Nicolas Pouillard and François Pottier

Hiding the real world but keeping a link

data $\alpha < f > = \exists \beta$. Abs $(\beta \triangleright \alpha)$ (Atom β) $(f \beta)$

Data type for explicitly typed lambda calculus

data Term
$$\alpha$$

= Var (Atom α)
| App (Term α) (Term α)
| $\exists \beta$. Lam ($\beta \triangleright \alpha$) (Atom β) Ty (Term β)
| $\exists \beta$. Let ($\beta \triangleright \alpha$) (Atom β) (Term α) (Term β)

Data type for explicitly typed lambda calculus

Abs :: $\forall \alpha \beta$ f. $(\beta \rhd \alpha) \rightarrow \text{Atom } \beta \rightarrow \text{f} \beta \rightarrow \alpha < \text{f} >$

Abs :: $\forall \alpha \beta$ f. $(\beta \rhd \alpha) \rightarrow \text{Atom } \beta \rightarrow f \beta \rightarrow \alpha < f >$

Lam :: $\forall \alpha \beta$. $(\beta \triangleright \alpha) \rightarrow$ Atom $\beta \rightarrow$ Term $\beta \rightarrow$ Term α

Abs :: $\forall \alpha \beta$ f. $(\beta \rhd \alpha) \rightarrow \text{Atom } \beta \rightarrow \text{f} \beta \rightarrow \alpha < \text{f} >$

Lam :: $\forall \alpha \beta$. $(\beta \triangleright \alpha) \rightarrow$ Atom $\beta \rightarrow$ Term $\beta \rightarrow$ Term α

mkLam :: $\forall \alpha$. Atom $\alpha \rightarrow$ Term $\alpha \rightarrow$ Term α mkLam x t = Lam (atomic x) x t

Abs :: $\forall \alpha \beta$ f. $(\beta \rhd \alpha) \rightarrow \text{Atom } \beta \rightarrow f \beta \rightarrow \alpha < f >$

Lam :: $\forall \alpha \beta$. $(\beta \triangleright \alpha) \rightarrow$ Atom $\beta \rightarrow$ Term $\beta \rightarrow$ Term α

mkLam :: $\forall \alpha$. Atom $\alpha \rightarrow$ Term $\alpha \rightarrow$ Term α mkLam x t = Lam (atomic x) x t

mkConst x y = mkLam x (mkLam y (Var x))

Nicolas Pouillard and François Pottier

Opening an abstraction does not freshen it

let (Abs lnk \times y) = t in u

Opening an abstraction does not freshen it

let (Abs lnk \times y) = t in u

 $\Gamma \vdash t : \alpha < f >$ where $\alpha \in \Gamma$

Opening an abstraction does not freshen it

let (Abs lnk \times y) = t in u

 $\Gamma \vdash t : \alpha < f > where \alpha \in \Gamma$

 $\Gamma, \beta, lnk: \beta \triangleright \alpha, x: Atom \beta, y: f \beta \vdash u : \tau where \beta \# \tau$

Nicolas Pouillard and François Pottier

• Well-typed programs do not get stuck

- Well-typed programs do not get stuck
- α -equivalence is preserved by casts

- Well-typed programs do not get stuck
- α -equivalence is preserved by casts
- Casts may dynamically fail or be proven successful

- Well-typed programs do not get stuck
- α -equivalence is preserved by casts
- Casts may dynamically fail or be proven successful
- α -equivalence is defined structurally on types

Example commuting abstraction with pairs

commute ::
$$\forall \alpha. \alpha < \lambda\beta \rightarrow (\text{Term } \beta, \text{Term } \beta) > \rightarrow (\alpha < \text{Term} >, \alpha < \text{Term} >)$$

commute t =
let (Abs lnk x (y,z)) = t
in (Abs lnk x y, Abs lnk x z)

Name capture does not type-check

```
wrong :: \forall \alpha. \alpha < \text{Term} > \rightarrow \text{Term } \alpha \rightarrow \alpha < \text{Term} >
wrong t u =
let (Abs lnk x y) = t
in Abs lnk x u
```

Computing the size of a term

```
size :: \forall \alpha. Term \alpha \rightarrow \text{Int}

size (Var _) = 1

size (App t u) = 1 + size t + size u

size (Lam _ _ _ t) = 3 + size t

size (Let _ t u) = 3 + size t + size u
```

Computing the size of a term

size ::
$$\forall \alpha$$
. Term $\alpha \rightarrow \text{Int}$
size (Var _) = 1
size (App t u) = 1 + size t + size u
size (Lam _ _ t) = 3 + size t
size (Let _ t u) = 3 + size t + size u

Polymorphic recursion!

Nicolas Pouillard and François Pottier

Computing free variables

```
\begin{array}{rll} \mathsf{remove} & :: \ \mathsf{Atom} \to \ [\mathsf{Atom}] \to \ [\mathsf{Atom}] \\ \mathsf{remove}_{-} & [] & = \ [] \\ \mathsf{remove} \ \mathsf{a} & (\mathsf{b}{:}\mathsf{bs}) \\ & | \ \mathsf{a} \ \equiv \ \mathsf{b} \ = \ \mathsf{remove} \ \mathsf{a} \ \mathsf{bs} \\ & | \ \mathsf{otherwise} \ = \ \mathsf{b} \ : \ \mathsf{remove} \ \mathsf{a} \ \mathsf{bs} \end{array}
```

Nicolas Pouillard and François Pottier

Computing free variables

```
remove ::

\forall \beta \alpha. (\beta \rhd \alpha) \rightarrow \text{Atom } \beta \rightarrow [\text{Atom } \beta] \rightarrow [\text{Atom } \alpha]

remove _ _ [] = []

remove lnk a (b:bs)

| a = b = remove lnk a bs

| otherwise = cast lnk b : remove lnk a bs
```

$$\begin{array}{rcl} \mathsf{fv} & :: \ \forall \ \alpha. \ \mathsf{Term} \ \alpha \ \rightarrow & [\mathsf{Atom} \ \alpha] \\ \mathsf{fv} & (\mathsf{Var} \ \mathsf{a}) & = & [\mathsf{a}] \\ \mathsf{fv} & (\mathsf{App} \ \mathsf{t} \ \mathsf{u}) & = & \mathsf{fv} \ \mathsf{t} \ ++ & \mathsf{fv} \ \mathsf{u} \\ \mathsf{fv} & (\mathsf{Lam} \ \mathsf{lnk} \ \mathsf{a} \ _ \ \mathsf{t}) = & \mathsf{remove} \ \mathsf{lnk} \ \mathsf{a} & (\mathsf{fv} \ \mathsf{t}) \\ \mathsf{fv} & (\mathsf{Let} \ \mathsf{lnk} \ \mathsf{a} \ \mathsf{t} \ \mathsf{u}) = & \mathsf{fv} \ \mathsf{t} \ ++ & \mathsf{remove} \ \mathsf{lnk} \ \mathsf{a} & (\mathsf{fv} \ \mathsf{u}) \end{array}$$

Looking up an environment

data Env
$$\beta$$
 = Empty
| $\exists \alpha$. Snoc ($\beta \triangleright \alpha$) (Env α) (Atom β) Ty

Typing a term

```
typing :: \forall \alpha. Env \alpha \rightarrow Term \alpha \rightarrow Ty
typing env (Var v)
  = lookupEnv v env
typing env (Lam lnk a ty t)
  = ty 'TyArrow' typing (Snoc lnk env a ty) t
typing env (Let lnk a t u)
  = typing (Snoc lnk env a (typing env t)) u
typing env (App t u)
  = case typing env t of
       from 'TyArrow' to | from \equiv typing env u \rightarrow to
       _{-} \rightarrow error "ill typed"
```

Nicolas Pouillard and François Pottier

• Deeper formalization and proofs

- Deeper formalization and proofs
- α -equivalence for inside-out abstractions

- Deeper formalization and proofs
- α -equivalence for inside-out abstractions
- Better understanding of heterogeneous comparison

- Deeper formalization and proofs
- α -equivalence for inside-out abstractions
- Better understanding of heterogeneous comparison
- Integrating complex binding structures

- Deeper formalization and proofs
- α -equivalence for inside-out abstractions
- Better understanding of heterogeneous comparison
- Integrating complex binding structures
- Properties implied by world polymorphism

• Explicit scopes using world indices

- Explicit scopes using world indices
- Non-freshening opening

- Explicit scopes using world indices
- Non-freshening opening
- Atom abstraction as existential quantification

- Explicit scopes using world indices
- Non-freshening opening
- Atom abstraction as existential quantification
- Expressivness close to a manual model with names

Questions?

Data type for explicitly typed lambda calculus

```
data Term

= Var Atom

| App Term Term

| Lam < Atom × neutral Ty × inner Term >

| Let < Atom × outer Term × inner Term >
```
```
data Term outer
= Var (Atom outer)
| App (Term outer) (Term outer)
| ∃inner. Lam (Atom inner) Ty (Term inner)
| ∃inner. Let (Atom inner) (Term outer) (Term inner)
```

data Term
$$\alpha$$

= Var (Atom α)
| App (Term α) (Term α)
| $\exists \beta$. Lam (Atom β) Ty (Term β)
| $\exists \beta$. Let (Atom β) (Term α) (Term β)

data Term
$$\alpha$$

= Var (Atom α)
| App (Term α) (Term α)
| $\exists \beta$. Lam ($\beta \triangleright \alpha$) (Atom β) Ty (Term β)
| $\exists \beta$. Let ($\beta \triangleright \alpha$) (Atom β) (Term α) (Term β)

Polymorphic values represent closed terms

Nicolas Pouillard and François Pottier

A more direct presentation of atom sorts

Generalizing C α ml data structures

Picking fresh atoms

fresh x in t

Picking fresh atoms

fresh x in t

• The atom can be used in the world you like

Picking fresh atoms

fresh x in t

where $x\#(t\Downarrow)$

- The atom can be used in the world you like
- \bullet Same proof obligation as in pure $\rm FreshML$

fresh x,InkExp,InkImp in t

fresh x,InkExp,InkImp in t

 $\begin{array}{l} \mathsf{\Gamma},\beta,\mathsf{lnkExp}:\beta \triangleright \alpha,\mathsf{lnkImp}:\alpha \triangleright \beta,\mathsf{x}:\mathsf{Atom} \ \beta \ \vdash \ \mathsf{t} \ : \ \tau \\ \text{where} \ \alpha \ \in \ \mathsf{\Gamma}, \ \beta \ \# \ \tau \end{array}$

fresh x,InkExp,InkImp in t

```
 \begin{array}{l} \mathsf{\Gamma},\beta,\mathsf{lnkExp}:\beta \triangleright \alpha,\mathsf{lnkImp}:\alpha \triangleright \beta,\mathsf{x}:\mathsf{Atom} \ \beta \ \vdash \ \mathsf{t} \ : \ \tau \\ \text{where} \ \alpha \ \in \ \mathsf{\Gamma}, \ \beta \ \# \ \tau \end{array}
```

• The fresh atom is in an existential world

fresh x,InkExp,InkImp in t

```
\Gamma, \beta, \mathsf{lnkExp}: \beta \triangleright \alpha, \mathsf{lnkImp}: \alpha \triangleright \beta, \mathsf{x}: \mathsf{Atom} \ \beta \vdash \mathsf{t} : \tau
where \alpha \in \Gamma, \ \beta \ \# \ \tau
```

- The fresh atom is in an existential world
- Links are provided to import and export things

fresh x,InkExp,InkImp in t

```
\begin{array}{l} \mathsf{\Gamma},\beta,\mathsf{lnkExp}:\beta \triangleright \alpha,\mathsf{lnkImp}:\alpha \triangleright \beta,\mathsf{x}:\mathsf{Atom} \ \beta \ \vdash \ \mathsf{t} \ : \ \tau \\ \mathsf{where} \ \alpha \ \in \ \mathsf{\Gamma}, \ \beta \ \# \ \tau \end{array}
```

- The fresh atom is in an existential world
- Links are provided to import and export things
- Proof obligations relied to casts

Freshening is still available

let (Abs $_$ Ink (fresh x) y) = t in u

Freshening is still available

let (Abs _lnk (fresh x) y) = t in u

Freshening allows to use the same world

$$\label{eq:relation} \begin{split} \mathsf{F} \ \vdash \ \mathsf{t} \ : \ \alpha < \mathsf{f} > \ \mathsf{where} \ \ \alpha \ \in \ \mathsf{F} \\ \mathsf{F},_\mathsf{lnk}: \alpha \triangleright \alpha, \mathsf{x}: \mathsf{Atom} \ \ \alpha, \mathsf{y}: \mathsf{f} \ \ \alpha \ \vdash \ \mathsf{u} \ : \ \tau \end{split}$$

Precise control over scopes

Having explicit world subsume:

• C α ml inner/outer/neutral annotations

Precise control over scopes

Having explicit world subsume:

- Cαml inner/outer/neutral annotations
- C α ml pattern types/expression types distinction

Precise control over scopes

Having explicit world subsume:

- $C\alpha ml inner/outer/neutral annotations$
- C α ml pattern types/expression types distinction
- $FRESHML/C\alpha ml$ atom sorts

Safe heterogeneous comparison!

Safe heterogeneous comparison!

atmEqH :: $\forall \alpha \beta$. Atom $\alpha \rightarrow$ Atom $\beta \rightarrow (\beta \rhd \alpha) \rightarrow$ Bool

Safe heterogeneous comparison!

atmEqH :: $\forall \alpha \beta$. Atom $\alpha \rightarrow$ Atom $\beta \rightarrow (\beta \rhd \alpha) \rightarrow$ Bool

 $atmEqH a b lnk | b \notin lnk = a \equiv cast lnk b | otherwise = False$

Substituting closed terms for variables

```
substClosed ::
     \forall \alpha. Atm \alpha \rightarrow (\forall \beta. Term \beta) \rightarrow Term \alpha \rightarrow Term \alpha
substClosed a v = go id
  where
     go :: \forall \delta. (\delta \triangleright \alpha) \rightarrow \text{Term } \delta \rightarrow \text{Term } \delta
     go lnk (Var b) | atmEqH a b lnk = v
                            otherwise = Var b
     go lnk (App t u)
         = App (go lnk t) (go lnk u)
     go lnk (Lam lnk' b ty t)
        = Lam lnk' b ty (go (lnk \circ lnk') t)
     go lnk (Let lnk' b t u)
        = Let lnk' b (go lnk t) (go (lnk \circ lnk') u)
```

Nicolas Pouillard and François Pottier