
Not So Fresh ML

Nicolas Pouillard and Fran�cois Pottier

fNicolas.Pouillard,Francois.Pottierg@inria.fr

CANS Seminar, 2009

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 1

Towards safer and more
expressive languages for

meta-programming

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 2

Program representation
should stay well-typed and

well-scoped

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 3

Pursuing the work on FreshML

Inspired from FreshML

pure FreshML for its safety

C�ml for its expressiveness

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 4

A taste of FreshML/C�ml

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 5

Data type for explicitly typed lambda calculus

data Term
= Var Atom
j App Term Term
j Lam < Atom � neutral Ty � inner Term >
j Let < Atom � outer Term � inner Term >

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 6

Capture avoiding substitution

subst :: (Atom, Term) ! Term ! Term
subst (a, v) = go
where
go (Var b) = if a � b then v else Var b
go (App t u) = App (go t) (go u)
go (Lam<b,ty,t>) = Lam<b, ty, go t>
go (Let<b,t,u>) = Let<b, go t, go u>

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 7

Computing the size of a term

size :: Term ! Int
size (Var) = 1
size (App t u) = 1 + size t + size u
size (Lam< , ,t>) = 3 + size t
size (Let< ,t,u>) = 3 + size t + size u

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 8

FreshML considered

too fresh

!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 9

FreshML considered too fresh!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 9

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

More e�cient programs

Freshening is useless while:

Computing the size of a term

Computing free variables

Typing some languages

Counting occurrences of some variable

Substituting closed terms for variables

Deciding �-equivalence

...

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 10

To freshen or not to freshen?

While FreshML implicitly freshen

This system allows both non-freshening and freshening openings

However we will only the non-freshening part

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 11

To freshen or not to freshen?

While FreshML implicitly freshen

This system allows both non-freshening and freshening openings

However we will only the non-freshening part

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 11

To freshen or not to freshen?

While FreshML implicitly freshen

This system allows both non-freshening and freshening openings

However we will only the non-freshening part

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 11

World-index types for atoms

let x = x in x

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 12

World-index types for atoms

let x = x in x

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 12

Let's classify atoms by a world they live in

The type of atoms is now indexed by a world

type Atom �

Equality is homogeneous and prevents mixing worlds

(�)
Atom

:: 8 �. Atom � ! Atom � ! Bool

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 13

Let's classify atoms by a world they live in

The type of atoms is now indexed by a world

type Atom �

Equality is homogeneous and prevents mixing worlds

(�)
Atom

:: 8 �. Atom � ! Atom � ! Bool

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 13

Data type for explicitly typed lambda calculus

data Term
= Var Atom
j App Term Term
j Lam < Atom � neutral Ty � inner Term >
j Let < Atom � outer Term � inner Term >

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 14

Data type for explicitly typed lambda calculus

data Term outer
= Var (Atom outer)
j App (Term outer) (Term outer)
j 9inner. Lam (Atom inner) Ty (Term inner)
j 9inner. Let (Atom inner) (Term outer) (Term inner)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 14

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j 9 �. Lam (Atom �) Ty (Term �)
j 9 �. Let (Atom �) (Term �) (Term �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 14

Worlds are closely related to each other

The type of (oriented) links between worlds

type � B �

Links holds the set of atoms as a frontier

�
(=2S)

B �

Links are supposed to be invisible/inferred!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 15

Worlds are closely related to each other

The type of (oriented) links between worlds

type � B �

Links holds the set of atoms as a frontier

�
(=2S)

B �

Links are supposed to be invisible/inferred!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 15

Worlds are closely related to each other

The type of (oriented) links between worlds

type � B �

Links holds the set of atoms as a frontier

�
(=2S)

B �

Links are supposed to be invisible/inferred!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 15

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j 9 �. Lam (Atom �) Ty (Term �)
j 9 �. Let (Atom �) (Term �) (Term �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 16

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j 9 �. Lam (� B �) (Atom �) Ty (Term �)
j 9 �. Let (� B �) (Atom �) (Term �) (Term �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 16

Link operations

Identity link

idLink :: 8 �. � B �

Link composition

(�)
Link

:: 8 � � . (� B) ! (� B �) ! (� B)

Atomic link

atomicLink :: 8 �. Atom � ! (� B �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 17

Link operations

Identity link

idLink :: 8 �. � B �

Link composition

(�)
Link

:: 8 � � . (� B) ! (� B �) ! (� B)

Atomic link

atomicLink :: 8 �. Atom � ! (� B �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 17

Link operations

Identity link

idLink :: 8 �. � B �

Link composition

(�)
Link

:: 8 � � . (� B) ! (� B �) ! (� B)

Atomic link

atomicLink :: 8 �. Atom � ! (� B �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 17

Casts to walk through links

Atomic casts

castAtom :: 8 � �. (� B �) ! (Atom � ! Atom �)

Generalized casts

castf :: 8 � � f. (� B �) ! (f � ! f �)

Cast implies proof obligations or dynamic checks!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 18

Casts to walk through links

Atomic casts

castAtom :: 8 � �. (� B �) ! (Atom � ! Atom �)

Generalized casts

castf :: 8 � � f. (� B �) ! (f � ! f �)

Cast implies proof obligations or dynamic checks!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 18

Casts to walk through links

Atomic casts

castAtom :: 8 � �. (� B �) ! (Atom � ! Atom �)

Generalized casts

castf :: 8 � � f. (� B �) ! (f � ! f �)

Cast implies proof obligations or dynamic checks!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 18

Atom abstraction as
existential quanti�cation

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 19

Hiding the real world but keeping a link

data �<f> = 9 �. Abs (� B �) (Atom �) (f �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 20

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j 9 �. Lam (� B �) (Atom �) Ty (Term �)
j 9 �. Let (� B �) (Atom �) (Term �) (Term �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 21

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j Lam �<��! (Ty, Term �)>
j Let �<��! (Term �, Term �)>

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 21

Making an abstraction

Abs :: 8 � � f. (� B �) ! Atom � ! f � ! �<f>

Lam :: 8 � �. (� B �) ! Atom � ! Term � ! Term �

mkLam :: 8 �. Atom � ! Term � ! Term �
mkLam x t = Lam (atomic x) x t

mkConst x y = mkLam x (mkLam y (Var x))

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 22

Making an abstraction

Abs :: 8 � � f. (� B �) ! Atom � ! f � ! �<f>

Lam :: 8 � �. (� B �) ! Atom � ! Term � ! Term �

mkLam :: 8 �. Atom � ! Term � ! Term �
mkLam x t = Lam (atomic x) x t

mkConst x y = mkLam x (mkLam y (Var x))

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 22

Making an abstraction

Abs :: 8 � � f. (� B �) ! Atom � ! f � ! �<f>

Lam :: 8 � �. (� B �) ! Atom � ! Term � ! Term �

mkLam :: 8 �. Atom � ! Term � ! Term �
mkLam x t = Lam (atomic x) x t

mkConst x y = mkLam x (mkLam y (Var x))

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 22

Making an abstraction

Abs :: 8 � � f. (� B �) ! Atom � ! f � ! �<f>

Lam :: 8 � �. (� B �) ! Atom � ! Term � ! Term �

mkLam :: 8 �. Atom � ! Term � ! Term �
mkLam x t = Lam (atomic x) x t

mkConst x y = mkLam x (mkLam y (Var x))

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 22

Opening an abstraction does not freshen it

let (Abs lnk x y) = t in u

� ` t : �<f> where � 2 �

�,�,lnk:�B�,x:Atom �,y:f � ` u : � where � # �

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 23

Opening an abstraction does not freshen it

let (Abs lnk x y) = t in u

� ` t : �<f> where � 2 �

�,�,lnk:�B�,x:Atom �,y:f � ` u : � where � # �

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 23

Opening an abstraction does not freshen it

let (Abs lnk x y) = t in u

� ` t : �<f> where � 2 �

�,�,lnk:�B�,x:Atom �,y:f � ` u : � where � # �

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 23

Safety Properties

Well-typed programs do not get stuck

�-equivalence is preserved by casts

Casts may dynamically fail or be proven successful

�-equivalence is de�ned structurally on types

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 24

Safety Properties

Well-typed programs do not get stuck

�-equivalence is preserved by casts

Casts may dynamically fail or be proven successful

�-equivalence is de�ned structurally on types

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 24

Safety Properties

Well-typed programs do not get stuck

�-equivalence is preserved by casts

Casts may dynamically fail or be proven successful

�-equivalence is de�ned structurally on types

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 24

Safety Properties

Well-typed programs do not get stuck

�-equivalence is preserved by casts

Casts may dynamically fail or be proven successful

�-equivalence is de�ned structurally on types

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 24

Example commuting abstraction with pairs

commute :: 8 �. �<��! (Term �, Term �)>
! (�<Term>, �<Term>)

commute t =
let (Abs lnk x (y,z)) = t
in (Abs lnk x y, Abs lnk x z)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 25

Name capture does not type-check

wrong :: 8 �. �<Term> ! Term � ! �<Term>
wrong t u =
let (Abs lnk x y) = t
in Abs lnk x u

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 26

Computing the size of a term

size :: 8 �. Term � ! Int
size (Var) = 1
size (App t u) = 1 + size t + size u
size (Lam t) = 3 + size t
size (Let t u) = 3 + size t + size u

Polymorphic recursion!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 27

Computing the size of a term

size :: 8 �. Term � ! Int
size (Var) = 1
size (App t u) = 1 + size t + size u
size (Lam t) = 3 + size t
size (Let t u) = 3 + size t + size u

Polymorphic recursion!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 27

Computing free variables

remove :: Atom ! [Atom] ! [Atom]
remove [] = []
remove a (b:bs)
j a � b = remove a bs
j otherwise = b : remove a bs

fv :: Term ! [Atom]
fv (Var a) = [a]
fv (App t u) = fv t ++ fv u
fv (Lam<a, ,t>) = remove a (fv t)
fv (Let<a,t,u>) = fv t ++ remove a (fv u)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 28

Computing free variables

remove ::
8 � �. (� B �) ! Atom � ! [Atom �] ! [Atom �]

remove [] = []
remove lnk a (b:bs)
j a � b = remove lnk a bs
j otherwise = cast lnk b : remove lnk a bs

fv :: 8 �. Term � ! [Atom �]
fv (Var a) = [a]
fv (App t u) = fv t ++ fv u
fv (Lam lnk a t) = remove lnk a (fv t)
fv (Let lnk a t u) = fv t ++ remove lnk a (fv u)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 28

Looking up an environment

data Env � = Empty
j 9 �. Snoc (� B �) (Env �) (Atom �) Ty

lookupEnv :: 8 �. Atom � ! Env � ! Ty
lookupEnv a (Snoc lnk env b ty)
j a � b = ty
j otherwise = lookupEnv (cast lnk a) env

lookupEnv Empty = error "unbound value"

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 29

Typing a term

typing :: 8 �. Env � ! Term � ! Ty
typing env (Var v)
= lookupEnv v env

typing env (Lam lnk a ty t)
= ty `TyArrow` typing (Snoc lnk env a ty) t

typing env (Let lnk a t u)
= typing (Snoc lnk env a (typing env t)) u

typing env (App t u)
= case typing env t of

from `TyArrow` to j from � typing env u ! to
! error "ill typed"

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 30

Challenges and future work

Deeper formalization and proofs

�-equivalence for inside-out abstractions

Better understanding of heterogeneous comparison

Integrating complex binding structures

Properties implied by world polymorphism

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 31

Challenges and future work

Deeper formalization and proofs

�-equivalence for inside-out abstractions

Better understanding of heterogeneous comparison

Integrating complex binding structures

Properties implied by world polymorphism

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 31

Challenges and future work

Deeper formalization and proofs

�-equivalence for inside-out abstractions

Better understanding of heterogeneous comparison

Integrating complex binding structures

Properties implied by world polymorphism

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 31

Challenges and future work

Deeper formalization and proofs

�-equivalence for inside-out abstractions

Better understanding of heterogeneous comparison

Integrating complex binding structures

Properties implied by world polymorphism

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 31

Challenges and future work

Deeper formalization and proofs

�-equivalence for inside-out abstractions

Better understanding of heterogeneous comparison

Integrating complex binding structures

Properties implied by world polymorphism

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 31

Conclusion

Explicit scopes using world indices

Non-freshening opening

Atom abstraction as existential quanti�cation

Expressivness close to a manual model with names

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 32

Conclusion

Explicit scopes using world indices

Non-freshening opening

Atom abstraction as existential quanti�cation

Expressivness close to a manual model with names

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 32

Conclusion

Explicit scopes using world indices

Non-freshening opening

Atom abstraction as existential quanti�cation

Expressivness close to a manual model with names

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 32

Conclusion

Explicit scopes using world indices

Non-freshening opening

Atom abstraction as existential quanti�cation

Expressivness close to a manual model with names

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 32

Questions?

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 33

Data type for explicitly typed lambda calculus

data Term
= Var Atom
j App Term Term
j Lam < Atom � neutral Ty � inner Term >
j Let < Atom � outer Term � inner Term >

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 34

Data type for explicitly typed lambda calculus

data Term outer
= Var (Atom outer)
j App (Term outer) (Term outer)
j 9inner. Lam (Atom inner) Ty (Term inner)
j 9inner. Let (Atom inner) (Term outer) (Term inner)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 34

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j 9 �. Lam (Atom �) Ty (Term �)
j 9 �. Let (Atom �) (Term �) (Term �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 34

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j 9 �. Lam (� B �) (Atom �) Ty (Term �)
j 9 �. Let (� B �) (Atom �) (Term �) (Term �)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 34

Data type for explicitly typed lambda calculus

data Term �
= Var (Atom �)
j App (Term �) (Term �)
j Lam �<��! (Ty, Term �)>
j Let �<��! (Term �, Term �)>

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 34

Polymorphic values represent
closed terms

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 35

A more direct presentation of
atom sorts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 36

Generalizing C�ml data
structures

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 37

Picking fresh atoms

fresh x in t

where x#(t +)

The atom can be used in the world you like

Same proof obligation as in pure FreshML

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 38

Picking fresh atoms

fresh x in t

where x#(t +)

The atom can be used in the world you like

Same proof obligation as in pure FreshML

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 38

Picking fresh atoms

fresh x in t where x#(t +)

The atom can be used in the world you like

Same proof obligation as in pure FreshML

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 38

Picking fresh atoms (second version)

fresh x,lnkExp,lnkImp in t

�,�,lnkExp:�B�,lnkImp:�B�,x:Atom � ` t : �
where � 2 �, � # �

The fresh atom is in an existential world

Links are provided to import and export things

Proof obligations relied to casts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 39

Picking fresh atoms (second version)

fresh x,lnkExp,lnkImp in t

�,�,lnkExp:�B�,lnkImp:�B�,x:Atom � ` t : �
where � 2 �, � # �

The fresh atom is in an existential world

Links are provided to import and export things

Proof obligations relied to casts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 39

Picking fresh atoms (second version)

fresh x,lnkExp,lnkImp in t

�,�,lnkExp:�B�,lnkImp:�B�,x:Atom � ` t : �
where � 2 �, � # �

The fresh atom is in an existential world

Links are provided to import and export things

Proof obligations relied to casts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 39

Picking fresh atoms (second version)

fresh x,lnkExp,lnkImp in t

�,�,lnkExp:�B�,lnkImp:�B�,x:Atom � ` t : �
where � 2 �, � # �

The fresh atom is in an existential world

Links are provided to import and export things

Proof obligations relied to casts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 39

Picking fresh atoms (second version)

fresh x,lnkExp,lnkImp in t

�,�,lnkExp:�B�,lnkImp:�B�,x:Atom � ` t : �
where � 2 �, � # �

The fresh atom is in an existential world

Links are provided to import and export things

Proof obligations relied to casts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 39

Freshening is still available

let (Abs lnk (fresh x) y) = t in u

Freshening allows to use the same world

� ` t : �<f> where � 2 �
�, lnk:�B�,x:Atom �,y:f � ` u : �

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 40

Freshening is still available

let (Abs lnk (fresh x) y) = t in u

Freshening allows to use the same world

� ` t : �<f> where � 2 �
�, lnk:�B�,x:Atom �,y:f � ` u : �

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 40

Precise control over scopes

Having explicit world subsume:

C�ml inner/outer/neutral annotations

C�ml pattern types/expression types distinction

FreshML/C�ml atom sorts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 41

Precise control over scopes

Having explicit world subsume:

C�ml inner/outer/neutral annotations

C�ml pattern types/expression types distinction

FreshML/C�ml atom sorts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 41

Precise control over scopes

Having explicit world subsume:

C�ml inner/outer/neutral annotations

C�ml pattern types/expression types distinction

FreshML/C�ml atom sorts

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 41

Safe heterogeneous
comparison!

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 42

Safe heterogeneous comparison!

atmEqH :: 8 � �. Atom � ! Atom � ! (� B �) ! Bool

atmEqH a b lnk j b =2 lnk = a � cast lnk b
j otherwise = False

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 43

Safe heterogeneous comparison!

atmEqH :: 8 � �. Atom � ! Atom � ! (� B �) ! Bool

atmEqH a b lnk j b =2 lnk = a � cast lnk b
j otherwise = False

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 43

Substituting closed terms for variables

substClosed ::
8 �. Atm � ! (8 �. Term �) ! Term � ! Term �

substClosed a v = go id
where
go :: 8 �. (� B �) ! Term � ! Term �
go lnk (Var b) j atmEqH a b lnk = v

j otherwise = Var b
go lnk (App t u)
= App (go lnk t) (go lnk u)

go lnk (Lam lnk' b ty t)
= Lam lnk' b ty (go (lnk � lnk') t)

go lnk (Let lnk' b t u)
= Let lnk' b (go lnk t) (go (lnk � lnk') u)

Nicolas Pouillard and Fran�cois Pottier Not So Fresh ML CANS Seminar, 2009 44

	Appendix

