{-# OPTIONS --universe-polymorphism #-}
module Data.Bool.Extras where

open import Data.Bool using (Bool; true; false; T; if_then_else_)
open import Data.Unit using ()
open import Data.Sum
open import Function
open import Relation.Binary.Extras
open import Relation.Binary.Logical
open import Relation.Nullary
open import Relation.Nullary.Decidable

If_then_else_ :  {} {A B : Set } (b : Bool)  A  B  if b then A else B
If_then_else_ true  x _ = x
If_then_else_ false _ x = x

data ⟦Bool⟧ : (b₁ b₂ : Bool)  Set where
  ⟦true⟧   : ⟦Bool⟧ true true
  ⟦false⟧  : ⟦Bool⟧ false false

module ⟦Bool⟧-Props where
  refl : Reflexive ⟦Bool⟧
  refl {true}   = ⟦true⟧
  refl {false}  = ⟦false⟧

  sym : Symmetric ⟦Bool⟧
  sym ⟦true⟧  = ⟦true⟧
  sym ⟦false⟧ = ⟦false⟧

  trans : Transitive ⟦Bool⟧
  trans ⟦true⟧   = id
  trans ⟦false⟧  = id

  subst :  {}  Substitutive ⟦Bool⟧ 
  subst _ ⟦true⟧   = id
  subst _ ⟦false⟧  = id

  _≟_ : Decidable ⟦Bool⟧
  true     true   = yes ⟦true⟧
  false    false  = yes ⟦false⟧
  true     false  = no (λ())
  false    true   = no (λ())

  isEquivalence : IsEquivalence ⟦Bool⟧
  isEquivalence = record { refl = refl; sym = sym; trans = trans }

  isDecEquivalence : IsDecEquivalence ⟦Bool⟧
  isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }

  setoid : Setoid _ _
  setoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isEquivalence = isEquivalence }

  decSetoid : DecSetoid _ _
  decSetoid = record { Carrier = Bool; _≈_ = ⟦Bool⟧; isDecEquivalence = isDecEquivalence }

⟦if⟨_⟩_then_else_⟧ :  {a₁ a₂ aᵣ}  (∀⟨ Aᵣ  ⟦Set⟧ {a₁} {a₂} aᵣ ⟩⟦→⟧ ⟦Bool⟧ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ ⟦→⟧ Aᵣ) if_then_else_ if_then_else_
⟦if⟨_⟩_then_else_⟧ _ ⟦true⟧  xᵣ _ = xᵣ
⟦if⟨_⟩_then_else_⟧ _ ⟦false⟧ _ xᵣ = xᵣ

⟦If⟨_,_⟩_then_else_⟧ :  {ℓ₁ ℓ₂ ℓᵣ} 
                       (∀⟨ Aᵣ  ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧ ∀⟨ Bᵣ  ⟦Set⟧ {ℓ₁} {ℓ₂} ℓᵣ ⟩⟦→⟧
                            bᵣ  ⟦Bool⟧ ⟩⟦→⟧ Aᵣ ⟦→⟧ Bᵣ ⟦→⟧ ⟦if⟨ ⟦Set⟧ _  bᵣ then Aᵣ else Bᵣ )
                       If_then_else_ If_then_else_
⟦If⟨_,_⟩_then_else_⟧ _ _ ⟦true⟧  xᵣ _ = xᵣ
⟦If⟨_,_⟩_then_else_⟧ _ _ ⟦false⟧ _ xᵣ = xᵣ

_==_ : (x y : Bool)  Bool
true == true = true
true == false = false
false == true = false
false == false = true

module == where
  _≈_ : (x y : Bool)  Set
  x  y = T (x == y)

  refl : Reflexive _≈_
  refl {true}  = _
  refl {false} = _

  subst :  {}  Substitutive _≈_ 
  subst _ {true}   {true}   _ = id
  subst _ {false}  {false}  _ = id
  subst _ {true}   {false}  ()
  subst _ {false}  {true}   ()

  sym : Symmetric _≈_
  sym {x} {y} eq = subst  y  y  x) {x} {y} eq (refl {x})

  trans : Transitive _≈_
  trans {x} {y} {z} x≈y y≈z = subst (_≈_ x) {y} {z} y≈z x≈y

  _≟_ : Decidable _≈_
  true     true   = yes _
  false    false  = yes _
  true     false  = no (λ())
  false    true   = no (λ())

  isEquivalence : IsEquivalence _≈_
  isEquivalence = record { refl = λ {x}  refl {x}
                         ; sym = λ {x} {y}  sym {x} {y}
                         ; trans = λ {x} {y} {z}  trans {x} {y} {z} }

  isDecEquivalence : IsDecEquivalence _≈_
  isDecEquivalence = record { isEquivalence = isEquivalence; _≟_ = _≟_ }

  setoid : Setoid _ _
  setoid = record { Carrier = Bool; _≈_ = _≈_ ; isEquivalence = isEquivalence }

  decSetoid : DecSetoid _ _
  decSetoid = record { Carrier = Bool; _≈_ = _≈_; isDecEquivalence = isDecEquivalence }

module ⟦Bool⟧-Reasoning = Setoid-Reasoning ⟦Bool⟧-Props.setoid

open Data.Bool public

⟦true⟧′ :  {b}  T b  ⟦Bool⟧ true b
⟦true⟧′ {true}  _ = ⟦true⟧
⟦true⟧′ {false} ()

⟦false⟧′ :  {b}  T (not b)  ⟦Bool⟧ false b
⟦false⟧′ {true} ()
⟦false⟧′ {false} _ = ⟦false⟧

T∧ :  {b₁ b₂}  T b₁  T b₂  T (b₁  b₂)
T∧ {true}   {true}  _   _  = _
T∧ {false}  {_}     ()  _
T∧ {true}   {false} _   ()

T∧₁ :  {b₁ b₂}  T (b₁  b₂)  T b₁
T∧₁ {true} {true} _ = _
T∧₁ {false} {_}   ()
T∧₁ {true} {false}   ()

T∧₂ :  {b₁ b₂}  T (b₁  b₂)  T b₂
T∧₂ {true} {true} _ = _
T∧₂ {false} {_}   ()
T∧₂ {true} {false}   ()

T∨'⊎ :  {b₁ b₂}  T (b₁  b₂)  T b₁  T b₂
T∨'⊎ {true} _ = inj₁ _
T∨'⊎ {false} {true} _ = inj₂ _
T∨'⊎ {false} {false} ()

T∨₁ :  {b₁ b₂}  T b₁  T (b₁  b₂)
T∨₁ {true} _ = _
T∨₁ {false} {true} _ = _
T∨₁ {false} {false} ()

T∨₂ :  {b₁ b₂}  T b₂  T (b₁  b₂)
T∨₂ {true} _ = _
T∨₂ {false} {true} _ = _
T∨₂ {false} {false} ()

T'not'¬ :  {b}  T (not b)  ¬ (T b)
T'not'¬ {false} _ = λ()
T'not'¬ {true} ()

T'¬'not :  {b}  ¬ (T b)  T (not b)
T'¬'not {true}  f = f _
T'¬'not {false} _ = _

Tdec :  b  Dec (T b)
Tdec true = yes _
Tdec false = no λ()