
Overloading, searching for alternatives

Overloading, searching for alternatives

Nicolas Pouillard

Nicolas.Pouillard@inria.fr

June 6, 2007

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 1 / 36

Overloading, searching for alternatives

Introduction

Outline

1 Introduction

2 Basic overloading

3 Delegated overloading

4 Recursion

5 Advanced features

6 Conclusion

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 2 / 36

Overloading, searching for alternatives

Introduction

Introduction

Overloading or not?
Crucial design choice
Hard to avoid for comparison, arithmetic and printing

Some languages already have overloading
C++, well used but too complex and not formalized
Haskell, less used but well understood

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 3 / 36

Overloading, searching for alternatives

Introduction

While working for Intel...

At Intel they develop their own language, reFLect

Functional and lazy
Circuit modeling and BDDs are deeply integrated
A fully reflective language
An advanced overloading system
An interpreter for that language

At INRIA, we develop for them a compiler
Based on the OCaml environment
Sharing the back-end compilers (starting at lambda-code)
Lifting the design a bit

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 4 / 36

Overloading, searching for alternatives

Introduction

The reFLect overloading system

Has evolved from version to version

Firstly, features ”closed overloading”
Provides direct and delegated forms
Then provides ”open overloading”
Finally, recursion trough ”open overloading”

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 5 / 36

Overloading, searching for alternatives

Introduction

The reFLect overloading system

Has evolved from version to version
Firstly, features ”closed overloading”

Provides direct and delegated forms
Then provides ”open overloading”
Finally, recursion trough ”open overloading”

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 5 / 36

Overloading, searching for alternatives

Introduction

The reFLect overloading system

Has evolved from version to version
Firstly, features ”closed overloading”
Provides direct and delegated forms

Then provides ”open overloading”
Finally, recursion trough ”open overloading”

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 5 / 36

Overloading, searching for alternatives

Introduction

The reFLect overloading system

Has evolved from version to version
Firstly, features ”closed overloading”
Provides direct and delegated forms
Then provides ”open overloading”

Finally, recursion trough ”open overloading”

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 5 / 36

Overloading, searching for alternatives

Introduction

The reFLect overloading system

Has evolved from version to version
Firstly, features ”closed overloading”
Provides direct and delegated forms
Then provides ”open overloading”
Finally, recursion trough ”open overloading”

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 5 / 36

Overloading, searching for alternatives

Introduction

Today’s overloading presentation

Extends the ML we know
Closer to OCaml than reFLect : Call-by-value, modules,
signatures...

Takes another path, not chronological
Starting from ”open overloading” and then close it

Syntax adopted, closer to OCaml but:
Operators are escaped like + instead of (+)

Int.t, List.t... instead of int, list...
Types and constructors application are like functions:
List.t Int.t, Cons 1 Nil...

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 6 / 36

Overloading, searching for alternatives

Basic overloading

Outline

1 Introduction

2 Basic overloading

3 Delegated overloading

4 Recursion

5 Advanced features

6 Conclusion

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 7 / 36

Overloading, searching for alternatives

Basic overloading

Declaring overloaded symbols

One declares it by giving a name and a type:

overload print : IO.output → α → unit
overload + : α → α → α

The given type is of any form

Can be a value (no arrow)
As many type variables as you want
Type variables are implicitly universally quantified
This type scheme is called the anti-unifier

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 8 / 36

Overloading, searching for alternatives

Basic overloading

Declaring instances

One gives the overloaded name and a list of new alternatives.

instance print Int.print Float.print
instance + Int. + Float. +

Each alternative must be
Unifiable with the anti-unifier
Non-unifiable with all other alternatives

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 9 / 36

Overloading, searching for alternatives

Basic overloading

Overloading and type inference

Type inference in this system is a two step process:

Traditional Hindley-Milner type inference

Fast, linear (in practice) in the size of the abstract syntax
tree
Starts with the anti-unifier for occurrences of overloaded
symbols
Gathers constraints on the type of occurrences

Overload resolution
Searches for a unique most-general satisfying assignment to
the type variables in those constraints
With all the complexity that entails

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 10 / 36

Overloading, searching for alternatives

Basic overloading

Overloading and type inference

Type inference in this system is a two step process:

Traditional Hindley-Milner type inference

Fast, linear (in practice) in the size of the abstract syntax
tree
Starts with the anti-unifier for occurrences of overloaded
symbols
Gathers constraints on the type of occurrences

Overload resolution
Searches for a unique most-general satisfying assignment to
the type variables in those constraints
With all the complexity that entails

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 10 / 36

Overloading, searching for alternatives

Basic overloading

Overloading and type inference

Type inference in this system is a two step process:

Traditional Hindley-Milner type inference

Fast, linear (in practice) in the size of the abstract syntax
tree
Starts with the anti-unifier for occurrences of overloaded
symbols
Gathers constraints on the type of occurrences

Overload resolution
Searches for a unique most-general satisfying assignment to
the type variables in those constraints
With all the complexity that entails

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 10 / 36

Overloading, searching for alternatives

Basic overloading

The outcome of overloading (basic)

Candidates:
A candidate is valid when it is unifiable with the
constrained occurrence
Finally on each occurrence of an overloaded symbol, we
have a list of valid candidates

The simplified outcome:
When only one candidate: keep it
Else: raise an overloading error

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 11 / 36

Overloading, searching for alternatives

Basic overloading

The outcome of overloading (basic)

Candidates:
A candidate is valid when it is unifiable with the
constrained occurrence
Finally on each occurrence of an overloaded symbol, we
have a list of valid candidates

The simplified outcome:
When only one candidate: keep it
Else: raise an overloading error

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 11 / 36

Overloading, searching for alternatives

Basic overloading

Simple examples

let isucc x = 1 + x
- val isucc : Int.t → Int.t

let fsucc x = 1.0 + x
- val fsucc : Float.t → Float.t

let foo x y = if x = y then x + 12 else y + y
- val foo : Int.t → Int.t → Int.t

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 12 / 36

Overloading, searching for alternatives

Basic overloading

Simple errors

false + true
! Unresolved symbol: + : Bool.t → Bool.t → Bool.t
! The 2 possible alternatives are:
! Int. + : Int.t → Int.t → Int.t
! Float. + : Float.t → Float.t → Float.t

fun x → x + x
! Unresolved symbol: + : α → α → α
! The 2 possible alternatives are:
! Int. + : Int.t → Int.t → Int.t
! Float. + : Float.t → Float.t → Float.t

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 13 / 36

Overloading, searching for alternatives

Basic overloading

A more complex example

let id int x = x + 0
- val id int : Int.t → Int.t
let id bool x = x && true
- val id bool : Bool.t → Bool.t
let id float x = x + 0.0
- val id float : Float.t → Float.t
overload id1 : α → α
instance id1 id int id bool
overload id2 : α → α
instance id2 id float id int
fun x → id1 (id2 x)

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 14 / 36

Overloading, searching for alternatives

Basic overloading

A more complex example

let id int x = x + 0
- val id int : Int.t → Int.t
let id bool x = x && true
- val id bool : Bool.t → Bool.t
let id float x = x + 0.0
- val id float : Float.t → Float.t
overload id1 : α → α
instance id1 id int id bool
overload id2 : α → α
instance id2 id float id int
fun x → id1 (id2 x)
- <fun> : Int.t → Int.t

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 14 / 36

Overloading, searching for alternatives

Basic overloading

Why alternatives must be pairwise not unifiable?

let inc fst p = fst p + 1
- val inc fst : (Int.t * α) → Int.t
let inc snd p = snd p + 1
- val inc snd : (α * Int.t) → Int.t
overload inc one : (α * β) → Int.t
instance inc one inc fst inc snd
! Attempt to overload "inc one" with alternatives...
! inc fst : (Int.t * α) → Int.t
! inc snd :: (β * Int.t) → Int.t

Indeed inc one(42,true) and inc one("foo",64) make sense,
but what about inc one(16,64)?

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 15 / 36

Overloading, searching for alternatives

Basic overloading

Overloading and modularity

Better distinction since we must give to the candidate a
name
And then, add the candidates to an overloaded symbol
Modules like Int, Float are concrete
A module like Num can declare overloaded symbols
Then the user can choose and is not a prisoner of
overloading

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 16 / 36

Overloading, searching for alternatives

Delegated overloading

Outline

1 Introduction

2 Basic overloading

3 Delegated overloading

4 Recursion

5 Advanced features

6 Conclusion

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 17 / 36

Overloading, searching for alternatives

Delegated overloading

Delegated overloading

One wants to compile such a generic definition

let double x = x + x

The solution adopted

An overloading error (too much candidates) becomes an
implicit argument when the overloading can be resolved later

In a nutshell
While classic overloading is just some type directed sugar,
delegated overloading allows generic programming

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 18 / 36

Overloading, searching for alternatives

Delegated overloading

The outcome of overloading (complete)

Context
Are we defining a value? (called def)
Is this choice ”future proof”? (called future proof)

Outcome

> if no candidates and future proof then
> raise an overloading error
> else if only one candidate
> and (future proof or not def) then keep it
> else if def then abstract over its implementation
> else raise an overloading error

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 19 / 36

Overloading, searching for alternatives

Delegated overloading

How delegated overloading works

Principle
When an overloaded symbol cannot be resolved but could be in
the future, we abstract the current definition from the
implementation of unresolved symbols.
These implicit arguments are then re-introduced at each call
site as overloaded occurrences.

Note
In this system, the resolution strategy is fixed

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 20 / 36

Overloading, searching for alternatives

Delegated overloading

Delegated overloading in action

let double x = x + x
- val double : [+ : α → α → α] ⇒ α → α

In fact the definition of double implicitly becomes:

let double’ + x = x + x

And a call to the function double is treated like that:

double 42
−→ double’ (+ : α → α → α) 42
−→ double’ (+ : Int.t → Int.t → Int.t) 42
−→ double’ Int. + 42

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 21 / 36

Overloading, searching for alternatives

Delegated overloading

Implicit arguments

For each occurrence
Given an overloaded symbol f:

f : [a1 : t1, ..., aN : tN] ⇒ t

Add all implicit arguments

f x −→ (f’ : t1 → ... → tN → t) a1 ... aN x

Implicit arguments are:
lexically ordered
distinct by name and type (others are merged)

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 22 / 36

Overloading, searching for alternatives

Delegated overloading

Closing the overloading

Prevent a symbol from being extended:

Is useful from development policy point of view
Can help the typing algorithm to pick a candidate

Syntax of closing

close overload +

future proof extension
We extend the future proof predicate to return true when the
overloaded symbol is closed

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 23 / 36

Overloading, searching for alternatives

Delegated overloading

Guessing the anti-unifier

One can provide short-cut for ”closed overloading”, by just
taking candidates and computing the least general anti-unifier

t ::= X | F T1...TN

t ⊗ t = t
F t1...tN ⊗ F u1...uN = F (t1 ⊗ u1)...(tN ⊗ uN)
t ⊗ u = fresh var t u

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 24 / 36

Overloading, searching for alternatives

Recursion

Outline

1 Introduction

2 Basic overloading

3 Delegated overloading

4 Recursion

5 Advanced features

6 Conclusion

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 25 / 36

Overloading, searching for alternatives

Recursion

Recursive functions

A compilation choice
Choose for once the set of implicit arguments
Pass different implicit arguments trough recursive calls

The second choice will require an annotation, and will be useful
only with polymorphic recursion (which also often requires an
annotation).

Example

let rec print list = ... print ... print list ...
- val print list :
- [print : IO.output → α → unit] ⇒
- IO.output → List.t α → unit

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 26 / 36

Overloading, searching for alternatives

Recursion

Recursion Through Open Overloading

Can a candidate use its own overloaded symbol?
Seems evident that that printing a list also rely on printing an
element, that adding pairs rely on adding it’s elements

Example

overload size : α → Int.t
let int size (:Int.t) = 1
- val int size : Int.t → Int.t
let pair size (x, y) = size x + size y
- val pair size :
- [size : α → Int.t, size : β → Int.t]
- ⇒ (α * β) → Int.t
instance size int size pair size

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 27 / 36

Overloading, searching for alternatives

Recursion

Recursion Through Open Overloading

Can a candidate use its own overloaded symbol?
Seems evident that that printing a list also rely on printing an
element, that adding pairs rely on adding it’s elements

Impact on the resolution
Recursion makes recursive the overloading resolution step, since
resolution can introduce new implicit arguments

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 27 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let list size = function
| [] → 0
| x::xs → size x + size xs
- val list size :
- [size : α → Int.t, size : List.t α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
size
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let list size = function
| [] → 0
| x::xs → size x + size xs
- val list size :
- [size : α → Int.t, size : List.t α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
list size size size
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let list size = function
| [] → 0
| x::xs → size x + size xs
- val list size :
- [size : α → Int.t, size : List.t α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
list size size (list size size size)
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let list size = function
| [] → 0
| x::xs → size x + size xs
- val list size :
- [size : α → Int.t, size : List.t α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
list size size (list size size (list size ...))
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let rec list size = function
| [] → 0
| x::xs → size x + list size xs
- val list size :
- [size : α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
size
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let rec list size = function
| [] → 0
| x::xs → size x + list size xs
- val list size :
- [size : α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
list size size
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let rec list size = function
| [] → 0
| x::xs → size x + list size xs
- val list size :
- [size : α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
list size (pair size size size)
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Recursions Must Be Well Founded

Example
let rec list size = function
| [] → 0
| x::xs → size x + list size xs
- val list size :
- [size : α → Int.t]
- ⇒ List.t α → Int.t
instance size list size
list size (pair size int size int size)
[(1,2); (3,4)]

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 28 / 36

Overloading, searching for alternatives

Recursion

Polymorphic Recursion

Example

type sequence α = Unit | Seq α (sequence (α * α))
val seq size :
[size : α → Int.t] ⇒ sequence α → Int.t
instance size seq size
let seq size = function
| Unit → 0
| Seq x xs → size x + size xs
- val seq size : [size : α → Int.t]
- ⇒ sequence α → Int.t

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 29 / 36

Overloading, searching for alternatives

Advanced features

Outline

1 Introduction

2 Basic overloading

3 Delegated overloading

4 Recursion

5 Advanced features

6 Conclusion

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 30 / 36

Overloading, searching for alternatives

Advanced features

Explicit overloading

Minor feature but makes the implicit argument system more
complete

Example

- val implicit : [size : α → Int.t]
- ⇒ List.t α → Int.t
explicit overloading explicit implicit
- val explicit : (α → Int.t) → List.t α → Int.t

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 31 / 36

Overloading, searching for alternatives

Advanced features

Default Values

Can be really useful too

Example

let print default oc =
IO.print string oc "?"
- val print default : IO.output → α → unit
default overloading print print default

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 32 / 36

Overloading, searching for alternatives

Advanced features

Higher order kinds

Extending the type system with these kinds makes the system
more fine grained

Type algebra becomes
Type constructors are implicitly sorted, at definition time
Type variables are explicitly sorted, just checked

T ::= (X, S) | (A, S) | T T

S ::= * | S → S

No it’s not higher order unification since the application is not
reduced

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 33 / 36

Overloading, searching for alternatives

Advanced features

Higher order kinds, examples

Example

overload map :
(α → β) → **container α → **container β

overload bind :
**monad α → (α → **monad β) → **monad β

type view **container α =
Nil | Cons α (**container α)

type stateM σ **monad α =
State (σ → **monad (α * σ))

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 34 / 36

Overloading, searching for alternatives

Conclusion

Outline

1 Introduction

2 Basic overloading

3 Delegated overloading

4 Recursion

5 Advanced features

6 Conclusion

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 35 / 36

Overloading, searching for alternatives

Conclusion

Conclusion and questions

So, ready for overloading?

Nicolas Pouillard Overloading, searching for alternativesJune 6, 2007 36 / 36

	Introduction
	Basic overloading
	Delegated overloading
	Recursion
	Advanced features
	Conclusion

