{-# OPTIONS --universe-polymorphism #-} module Data.Sum.NP where open import Level open import Function open import Data.Sum public open import Relation.Binary.Logical import Relation.Binary.PropositionalEquality as ≡ open ≡ using (_≡_;_≢_;_≗_) inj₁-inj : ∀ {a b} {A : Set a} {B : Set b} {x y : A} → (inj₁ x ∶ A ⊎ B) ≡ inj₁ y → x ≡ y inj₁-inj ≡.refl = ≡.refl inj₂-inj : ∀ {a b} {A : Set a} {B : Set b} {x y : B} → (inj₂ x ∶ A ⊎ B) ≡ inj₂ y → x ≡ y inj₂-inj ≡.refl = ≡.refl infixr 4 _⟦⊎⟧_ data _⟦⊎⟧_ {a₁ a₂ b₁ b₂ aᵣ bᵣ} {A₁ : Set a₁} {A₂ : Set a₂} (Aᵣ : A₁ → A₂ → Set aᵣ) {B₁ : Set b₁} {B₂ : Set b₂} (Bᵣ : B₁ → B₂ → Set bᵣ) : A₁ ⊎ B₁ → A₂ ⊎ B₂ → Set (a₁ ⊔ a₂ ⊔ b₁ ⊔ b₂ ⊔ aᵣ ⊔ bᵣ) where inj₁ : ∀ {x₁ x₂} (xᵣ : Aᵣ x₁ x₂) → (Aᵣ ⟦⊎⟧ Bᵣ) (inj₁ x₁) (inj₁ x₂) inj₂ : ∀ {x₁ x₂} (xᵣ : Bᵣ x₁ x₂) → (Aᵣ ⟦⊎⟧ Bᵣ) (inj₂ x₁) (inj₂ x₂) ⟦[_,_]′⟧ : ∀ {a b c} → (∀⟨ A ∶ ⟦Set⟧ a ⟩⟦→⟧ ∀⟨ B ∶ ⟦Set⟧ b ⟩⟦→⟧ ∀⟨ C ∶ ⟦Set⟧ c ⟩⟦→⟧ (A ⟦→⟧ C) ⟦→⟧ (B ⟦→⟧ C) ⟦→⟧ (A ⟦⊎⟧ B) ⟦→⟧ C) ([_,_]′ {a} {b} {c}) ([_,_]′ {a} {b} {c}) ⟦[_,_]′⟧ _ _ _ f _ (inj₁ xᵣ) = f xᵣ ⟦[_,_]′⟧ _ _ _ _ g (inj₂ xᵣ) = g xᵣ ⟦map⟧ : ∀ {a b c d} → (∀⟨ A ∶ ⟦Set⟧ a ⟩⟦→⟧ ∀⟨ B ∶ ⟦Set⟧ b ⟩⟦→⟧ ∀⟨ C ∶ ⟦Set⟧ c ⟩⟦→⟧ ∀⟨ D ∶ ⟦Set⟧ d ⟩⟦→⟧ (A ⟦→⟧ C) ⟦→⟧ (B ⟦→⟧ D) ⟦→⟧ (A ⟦⊎⟧ B ⟦→⟧ C ⟦⊎⟧ D)) (map {a} {b} {c} {d}) (map {a} {b} {c} {d}) ⟦map⟧ A B C D f g = ⟦[_,_]′⟧ A B (C ⟦⊎⟧ D) (inj₁ ∘′ f) (inj₂ ∘′ g) [,]-assoc : ∀ {a₁ a₂ b₁ b₂ c} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : Set b₁} {B₂ : Set b₂} {C : Set c} {f₁ : B₁ → C} {g₁ : A₁ → B₁} {f₂ : B₂ → C} {g₂ : A₂ → B₂} → [ f₁ , f₂ ] ∘′ map g₁ g₂ ≗ [ f₁ ∘ g₁ , f₂ ∘ g₂ ] [,]-assoc (inj₁ _) = ≡.refl [,]-assoc (inj₂ _) = ≡.refl [,]-factor : ∀ {a₁ a₂ b c} {A₁ : Set a₁} {A₂ : Set a₂} {B : Set b} {C : Set c} {f : B → C} {g₁ : A₁ → B} {g₂ : A₂ → B} → [ f ∘ g₁ , f ∘ g₂ ] ≗ f ∘ [ g₁ , g₂ ] [,]-factor (inj₁ _) = ≡.refl [,]-factor (inj₂ _) = ≡.refl map-assoc : ∀ {a₁ a₂ b₁ b₂ c₁ c₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : Set b₁} {B₂ : Set b₂} {C₁ : Set c₁} {C₂ : Set c₂} {f₁ : B₁ → C₁} {g₁ : A₁ → B₁} {f₂ : B₂ → C₂} {g₂ : A₂ → B₂} → map f₁ f₂ ∘′ map g₁ g₂ ≗ map (f₁ ∘ g₁) (f₂ ∘ g₂) map-assoc = [,]-assoc open import Data.Bool open import Data.Product open import Function.Inverse open import Function.LeftInverse open ≡ using (→-to-⟶) ⊎-proj₁ : ∀ {a b} {A : Set a} {B : Set b} → A ⊎ B → Bool ⊎-proj₁ (inj₁ _) = true ⊎-proj₁ (inj₂ _) = false ⊎-proj₂ : ∀ {ℓ} {A B : Set ℓ} (x : A ⊎ B) → if ⊎-proj₁ x then A else B ⊎-proj₂ (inj₁ x) = x ⊎-proj₂ (inj₂ x) = x ⊎⇿ΣBool : ∀ {ℓ} {A B : Set ℓ} → (A ⊎ B) ↔ ∃ λ b → if b then A else B ⊎⇿ΣBool {A = A} {B} = record { to = →-to-⟶ to; from = →-to-⟶ from ; inverse-of = record { left-inverse-of = left ; right-inverse-of = right } } where to : A ⊎ B → ∃ λ b → if b then A else B to (inj₁ x) = true , x to (inj₂ x) = false , x from : (∃ λ b → if b then A else B) → A ⊎ B from (true , x) = inj₁ x from (false , x) = inj₂ x left : →-to-⟶ from LeftInverseOf →-to-⟶ to left (inj₁ x) = ≡.refl left (inj₂ x) = ≡.refl right : →-to-⟶ from RightInverseOf →-to-⟶ to right (true , x) = ≡.refl right (false , x) = ≡.refl