open import Relation.Binary
module Relation.Binary.On {a b} {A : Set a} {B : Set b}
(f : B → A) where
open import Function
open import Data.Product
implies : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) →
≈ ⇒ ∼ → (≈ on f) ⇒ (∼ on f)
implies _ _ impl = impl
reflexive : ∀ {ℓ} (∼ : Rel A ℓ) → Reflexive ∼ → Reflexive (∼ on f)
reflexive _ refl = refl
irreflexive : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) →
Irreflexive ≈ ∼ → Irreflexive (≈ on f) (∼ on f)
irreflexive _ _ irrefl = irrefl
symmetric : ∀ {ℓ} (∼ : Rel A ℓ) → Symmetric ∼ → Symmetric (∼ on f)
symmetric _ sym = sym
transitive : ∀ {ℓ} (∼ : Rel A ℓ) → Transitive ∼ → Transitive (∼ on f)
transitive _ trans = trans
antisymmetric : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) →
Antisymmetric ≈ ≤ → Antisymmetric (≈ on f) (≤ on f)
antisymmetric _ _ antisym = antisym
asymmetric : ∀ {ℓ} (< : Rel A ℓ) → Asymmetric < → Asymmetric (< on f)
asymmetric _ asym = asym
respects : ∀ {ℓ p} (∼ : Rel A ℓ) (P : A → Set p) →
P Respects ∼ → (P ∘ f) Respects (∼ on f)
respects _ _ resp = resp
respects₂ : ∀ {ℓ₁ ℓ₂} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) →
∼₁ Respects₂ ∼₂ → (∼₁ on f) Respects₂ (∼₂ on f)
respects₂ _ _ (resp₁ , resp₂) =
((λ {_} {_} {_} → resp₁) , λ {_} {_} {_} → resp₂)
decidable : ∀ {ℓ} (∼ : Rel A ℓ) → Decidable ∼ → Decidable (∼ on f)
decidable _ dec = λ x y → dec (f x) (f y)
total : ∀ {ℓ} (∼ : Rel A ℓ) → Total ∼ → Total (∼ on f)
total _ tot = λ x y → tot (f x) (f y)
trichotomous : ∀ {ℓ₁ ℓ₂} (≈ : Rel A ℓ₁) (< : Rel A ℓ₂) →
Trichotomous ≈ < → Trichotomous (≈ on f) (< on f)
trichotomous _ _ compare = λ x y → compare (f x) (f y)
isEquivalence : ∀ {ℓ} {≈ : Rel A ℓ} →
IsEquivalence ≈ → IsEquivalence (≈ on f)
isEquivalence {≈ = ≈} eq = record
{ refl = reflexive ≈ Eq.refl
; sym = symmetric ≈ Eq.sym
; trans = transitive ≈ Eq.trans
}
where module Eq = IsEquivalence eq
isPreorder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} →
IsPreorder ≈ ∼ → IsPreorder (≈ on f) (∼ on f)
isPreorder {≈ = ≈} {∼} pre = record
{ isEquivalence = isEquivalence Pre.isEquivalence
; reflexive = implies ≈ ∼ Pre.reflexive
; trans = transitive ∼ Pre.trans
}
where module Pre = IsPreorder pre
isDecEquivalence : ∀ {ℓ} {≈ : Rel A ℓ} →
IsDecEquivalence ≈ → IsDecEquivalence (≈ on f)
isDecEquivalence {≈ = ≈} dec = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = decidable ≈ Dec._≟_
}
where module Dec = IsDecEquivalence dec
isPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsPartialOrder ≈ ≤ →
IsPartialOrder (≈ on f) (≤ on f)
isPartialOrder {≈ = ≈} {≤} po = record
{ isPreorder = isPreorder Po.isPreorder
; antisym = antisymmetric ≈ ≤ Po.antisym
}
where module Po = IsPartialOrder po
isStrictPartialOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} →
IsStrictPartialOrder ≈ < →
IsStrictPartialOrder (≈ on f) (< on f)
isStrictPartialOrder {≈ = ≈} {<} spo = record
{ isEquivalence = isEquivalence Spo.isEquivalence
; irrefl = irreflexive ≈ < Spo.irrefl
; trans = transitive < Spo.trans
; <-resp-≈ = respects₂ < ≈ Spo.<-resp-≈
}
where module Spo = IsStrictPartialOrder spo
isTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsTotalOrder ≈ ≤ →
IsTotalOrder (≈ on f) (≤ on f)
isTotalOrder {≈ = ≈} {≤} to = record
{ isPartialOrder = isPartialOrder To.isPartialOrder
; total = total ≤ To.total
}
where module To = IsTotalOrder to
isDecTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsDecTotalOrder ≈ ≤ →
IsDecTotalOrder (≈ on f) (≤ on f)
isDecTotalOrder {≈ = ≈} {≤} dec = record
{ isTotalOrder = isTotalOrder Dec.isTotalOrder
; _≟_ = decidable ≈ Dec._≟_
; _≤?_ = decidable ≤ Dec._≤?_
}
where module Dec = IsDecTotalOrder dec
isStrictTotalOrder : ∀ {ℓ₁ ℓ₂} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} →
IsStrictTotalOrder ≈ < →
IsStrictTotalOrder (≈ on f) (< on f)
isStrictTotalOrder {≈ = ≈} {<} sto = record
{ isEquivalence = isEquivalence Sto.isEquivalence
; trans = transitive < Sto.trans
; compare = trichotomous ≈ < Sto.compare
; <-resp-≈ = respects₂ < ≈ Sto.<-resp-≈
}
where module Sto = IsStrictTotalOrder sto