------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------

open import Algebra

module Algebra.Props.Group {g₁ g₂} (G : Group g₁ g₂) where

open Group G
import Algebra.FunctionProperties as P; open P _≈_
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Function
open import Data.Product

⁻¹-involutive :  x  x ⁻¹ ⁻¹  x
⁻¹-involutive x = begin
  x ⁻¹ ⁻¹               ≈⟨ sym $ proj₂ identity _ 
  x ⁻¹ ⁻¹  ε           ≈⟨ refl  ∙-cong  sym (proj₁ inverse _) 
  x ⁻¹ ⁻¹  (x ⁻¹  x)  ≈⟨ sym $ assoc _ _ _ 
  x ⁻¹ ⁻¹  x ⁻¹  x    ≈⟨ proj₁ inverse _  ∙-cong  refl 
  ε  x                 ≈⟨ proj₁ identity _ 
  x                     

private

  left-helper :  x y  x  (x  y)  y ⁻¹
  left-helper x y = begin
    x              ≈⟨ sym (proj₂ identity x) 
    x  ε          ≈⟨ refl  ∙-cong  sym (proj₂ inverse y) 
    x  (y  y ⁻¹) ≈⟨ sym (assoc x y (y ⁻¹)) 
    (x  y)  y ⁻¹ 

  right-helper :  x y  y  x ⁻¹  (x  y)
  right-helper x y = begin
    y              ≈⟨ sym (proj₁ identity y) 
    ε           y ≈⟨ sym (proj₁ inverse x)  ∙-cong  refl 
    (x ⁻¹  x)  y ≈⟨ assoc (x ⁻¹) x y 
    x ⁻¹  (x  y) 

left-identity-unique :  x y  x  y  y  x  ε
left-identity-unique x y eq = begin
  x              ≈⟨ left-helper x y 
  (x  y)  y ⁻¹ ≈⟨ eq  ∙-cong  refl 
       y   y ⁻¹ ≈⟨ proj₂ inverse y 
  ε              

right-identity-unique :  x y  x  y  x  y  ε
right-identity-unique x y eq = begin
  y              ≈⟨ right-helper x y 
  x ⁻¹  (x  y) ≈⟨ refl  ∙-cong  eq 
  x ⁻¹   x      ≈⟨ proj₁ inverse x 
  ε              

identity-unique :  {x}  Identity x _∙_  x  ε
identity-unique {x} id = left-identity-unique x x (proj₂ id x)

left-inverse-unique :  x y  x  y  ε  x  y ⁻¹
left-inverse-unique x y eq = begin
  x              ≈⟨ left-helper x y 
  (x  y)  y ⁻¹ ≈⟨ eq  ∙-cong  refl 
       ε   y ⁻¹ ≈⟨ proj₁ identity (y ⁻¹) 
            y ⁻¹ 

right-inverse-unique :  x y  x  y  ε  y  x ⁻¹
right-inverse-unique x y eq = begin
  y       ≈⟨ sym (⁻¹-involutive y) 
  y ⁻¹ ⁻¹ ≈⟨ ⁻¹-cong (sym (left-inverse-unique x y eq)) 
  x ⁻¹