{-# OPTIONS --universe-polymorphism #-}
module Data.Nat.NP where

import Algebra
open import Algebra.FunctionProperties.NP
open import Data.Nat public hiding (module GeneralisedArithmetic; module ≤-Reasoning; fold)
open import Data.Nat.Properties as Props
open import Data.Nat.Logical
open import Data.Bool.NP hiding (_==_; module ==)
open import Data.Product using (proj₁; proj₂;; _,_)
open import Data.Sum renaming (map to ⊎-map)
open import Data.Empty using (⊥-elim;)
open import Function.NP
open import Relation.Nullary
open import Relation.Binary.NP
import Relation.Binary.PropositionalEquality.NP as 
open  using (_≡_; _≢_; _≗_; module ≡-Reasoning)

module ℕ°   = Algebra.CommutativeSemiring Props.commutativeSemiring
module ℕcmp = StrictTotalOrder Props.strictTotalOrder
module ℕ≤   = DecTotalOrder    decTotalOrder
module ⊔°   = Algebra.CommutativeSemiringWithoutOne ⊔-⊓-0-commutativeSemiringWithoutOne

module ≤-Reasoning where
  open Preorder-Reasoning ℕ≤.preorder public renaming (_∼⟨_⟩_ to _≤⟨_⟩_)
  infixr 2 _≡⟨_⟩_
  _≡⟨_⟩_ :  x {y z : }  x  y  y  z  x  z
  _ ≡⟨ ≡.refl  p = p
  infixr 2 _<⟨_⟩_
  _<⟨_⟩_ :  x {y z : }  x < y  y  z  x < z
  x <⟨ p  q = suc x ≤⟨ p  q

suc-injective :  {n m : }  (suc n  )  suc m  n  m
suc-injective = ≡.cong pred

+-≤-inj :  x {y z}  x + y  x + z  y  z
+-≤-inj zero    p       = p
+-≤-inj (suc x) (s≤s p) = +-≤-inj x p

sucx≰x :  x  suc x  x
sucx≰x zero    = λ()
sucx≰x (suc x) = sucx≰x x  ≤-pred

¬n≤x<n :  n {x}  n  x  x < n  
¬n≤x<n n p q = sucx≰x _ (ℕ≤.trans q p)

¬n+≤y<n :  n {x y}  n + x  y  y < n  
¬n+≤y<n n p q = sucx≰x _ (ℕ≤.trans q (ℕ≤.trans (ℕ≤.trans (ℕ≤.reflexive (ℕ°.+-comm 0 n)) ((ℕ≤.refl {n}) +-mono z≤n)) p))

fold :  {a} {A : Set a}  A  Endo A    A
fold x f n = nest n f x

+-inj-over-∸ :  x y z  (x + y)  (x + z)  y  z
+-inj-over-∸ = [i+j]∸[i+k]≡j∸k 

2*_ :   
2* x = x + x

2*-spec :  n  2* n  2 * n
2*-spec n rewrite ℕ°.+-comm n 0 = ≡.refl

_==_ : (x y : )  Bool
zero   == zero   = true
zero   == suc _  = false
suc _  == zero   = false
suc m  == suc n  = m == n

+-assoc-comm :  x y z  x + (y + z)  y + (x + z)
+-assoc-comm x y z rewrite ≡.sym (ℕ°.+-assoc x y z)
                       | ℕ°.+-comm x y
                       | ℕ°.+-assoc y x z = ≡.refl

+-interchange : Interchange _≡_ _+_ _+_
+-interchange = InterchangeFromAssocCommCong.∙-interchange _≡_ ≡.isEquivalence
                                                           _+_ ℕ°.+-assoc ℕ°.+-comm  z  ≡.cong (flip _+_ z))

2*′_ :   
2*′_ = fold 0 (suc ∘′ suc)

2*′-spec :  n  2*′ n  2* n
2*′-spec zero = ≡.refl
2*′-spec (suc n) rewrite 2*′-spec n | +-assoc-comm 1 n n = ≡.refl

dist :     
dist zero    y       = y
dist x       zero    = x
dist (suc x) (suc y) = dist x y

dist-refl :  x  dist x x  0
dist-refl zero = ≡.refl
dist-refl (suc x) rewrite dist-refl x = ≡.refl

dist-0≡id :  x  dist 0 x  x
dist-0≡id _ = ≡.refl

dist-x-x+y≡y :  x y  dist x (x + y)  y
dist-x-x+y≡y zero    y = ≡.refl
dist-x-x+y≡y (suc x) y = dist-x-x+y≡y x y

dist-sym :  x y  dist x y  dist y x
dist-sym zero zero = ≡.refl
dist-sym zero (suc y) = ≡.refl
dist-sym (suc x) zero = ≡.refl
dist-sym (suc x) (suc y) = dist-sym x y

dist-x+ :  x y z  dist (x + y) (x + z)  dist y z
dist-x+ zero    y z = ≡.refl
dist-x+ (suc x) y z = dist-x+ x y z

dist-2* :  x y  dist (2* x) (2* y)  2* dist x y
dist-2* zero y = ≡.refl
dist-2* (suc x) zero = ≡.refl
dist-2* (suc x) (suc y) rewrite +-assoc-comm x 1 x
                              | +-assoc-comm y 1 y = dist-2* x y

dist-asym-def :  {x y}  x  y  x + dist x y  y
dist-asym-def z≤n = ≡.refl
dist-asym-def (s≤s pf) = ≡.cong suc (dist-asym-def pf)

dist-sym-wlog :  (f :   )  (∀ x k  dist (f x) (f (x + k))  f k)   x y  dist (f x) (f y)  f (dist x y)
dist-sym-wlog f pf x y with compare x y
dist-sym-wlog f pf x .(suc (x + k)) | less .x k with pf x (suc k)
... | q rewrite +-assoc-comm x 1 k | q | ≡.sym (+-assoc-comm x 1 k) | dist-x-x+y≡y x (suc k) = ≡.refl
dist-sym-wlog f pf .y y | equal .y with pf y 0
... | q rewrite ℕ°.+-comm y 0 | dist-refl y = q
dist-sym-wlog f pf .(suc (y + k)) y | greater .y k with pf y (suc k)
... | q rewrite +-assoc-comm 1 y k | dist-sym (y + suc k) y | dist-x-x+y≡y y (suc k) | dist-sym (f (y + suc k)) (f y) = q

dist-x* :  x y z  dist (x * y) (x * z)  x * dist y z
dist-x* x = dist-sym-wlog (_*_ x) pf
  where pf :  a k  dist (x * a) (x * (a + k))  x * k
        pf a k rewrite proj₁ ℕ°.distrib x a k = dist-x-x+y≡y (x * a) _

2^⟨_⟩* :     
2^⟨ n ⟩* x = fold x 2*_ n

⟨2^_*_⟩ :     
⟨2^ n * x  = 2^⟨ n ⟩* x

2*-distrib :  x y  2* x + 2* y  2* (x + y) 
2*-distrib = solve 2  x y  2:* x :+ 2:* y := 2:* (x :+ y)) ≡.refl
      where open SemiringSolver
            2:* :  {n}  Polynomial n  Polynomial n
            2:* x = x :+ x

2^*-distrib :  k x y  ⟨2^ k * (x + y)  ⟨2^ k * x  + ⟨2^ k * y 
2^*-distrib zero x y = ≡.refl
2^*-distrib (suc k) x y rewrite 2^*-distrib k x y = ≡.sym (2*-distrib ⟨2^ k * x  ⟨2^ k * y )

2^*-2*-comm :  k x  ⟨2^ k * 2* x   2* ⟨2^ k * x 
2^*-2*-comm k x = 2^*-distrib k x x

dist-2^* :  x y z  dist ⟨2^ x * y  ⟨2^ x * z   ⟨2^ x * dist y z 
dist-2^* x = dist-sym-wlog (2^⟨ x ⟩*) pf
  where pf :  a k  dist ⟨2^ x * a  ⟨2^ x * (a + k)   ⟨2^ x * k 
        pf a k rewrite 2^*-distrib x a k = dist-x-x+y≡y ⟨2^ x * a  ⟨2^ x * k 

dist-bounded :  {x y f}  x  f  y  f  dist x y  f
dist-bounded z≤n       y≤f = y≤f
dist-bounded (s≤s x≤f) z≤n = s≤s x≤f
dist-bounded (s≤s x≤f) (s≤s y≤f) = ≤-step (dist-bounded x≤f y≤f)

2*-mono :  {a b}  a  b  2* a  2* b
2*-mono pf = pf +-mono pf

2^*-mono :  k {a b}  a  b  ⟨2^ k * a   ⟨2^ k * b 
2^*-mono zero    pf = pf
2^*-mono (suc k) pf = 2*-mono (2^*-mono k pf)

2*-mono′ :  {a b}  2* a  2* b  a  b
2*-mono′ {zero} pf = z≤n
2*-mono′ {suc a} {zero} ()
2*-mono′ {suc a} {suc b} pf rewrite +-assoc-comm a 1 a
                                  | +-assoc-comm b 1 b = s≤s (2*-mono′ (≤-pred (≤-pred pf)))

2^*-mono′ :  k {a b}  ⟨2^ k * a   ⟨2^ k * b   a  b
2^*-mono′ zero    = id
2^*-mono′ (suc k) = 2^*-mono′ k  2*-mono′

2^-comm :  x y z  ⟨2^ x * ⟨2^ y * z    ⟨2^ y * ⟨2^ x * z  
2^-comm zero y z = ≡.refl
2^-comm (suc x) y z rewrite 2^-comm x y z = ≡.sym (2^*-2*-comm y ⟨2^ x * z )

2^-+ :  x y z  ⟨2^ x * ⟨2^ y * z    ⟨2^ (x + y) * z 
2^-+ zero    y z = ≡.refl
2^-+ (suc x) y z = ≡.cong 2*_ (2^-+ x y z)

2*′-inj :  {m n}  ⟦ℕ⟧ (2*′ m) (2*′ n)  ⟦ℕ⟧ m n
2*′-inj {zero}  {zero}  _ = zero
2*′-inj {zero}  {suc _} ()
2*′-inj {suc _} {zero}  ()
2*′-inj {suc m} {suc n} (suc (suc p)) = suc (2*′-inj p)

2*-inj :  {m n}  2* m  2* n  m  n
2*-inj {m} {n} p rewrite ≡.sym (2*′-spec m)
                       | ≡.sym (2*′-spec n)
                       = ⟦ℕ⟧⇒≡ (2*′-inj (⟦ℕ⟧ˢ.reflexive p))

2^-inj :  k {m n}  ⟨2^ k * m   ⟨2^ k * n   m  n
2^-inj zero    = id
2^-inj (suc k) = 2^-inj k  2*-inj

2ⁿ*0≡0 :  n  ⟨2^ n * 0   0
2ⁿ*0≡0 zero    = ≡.refl
2ⁿ*0≡0 (suc n) = ≡.cong₂ _+_ (2ⁿ*0≡0 n) (2ⁿ*0≡0 n)

0∸_≡0 :  x  0  x  0
0∸ zero  ≡0 = ≡.refl
0∸ suc x ≡0 = ≡.refl

2*-∸ :  x y  2* x  2* y  2* (x  y)
2*-∸ _       zero    = ≡.refl
2*-∸ zero    (suc _) = ≡.refl
2*-∸ (suc x) (suc y) rewrite ≡.sym (2*-∸ x y) | ℕ°.+-comm x (1 + x) | ℕ°.+-comm y (1 + y) = ≡.refl

n+k∸m :  {m n} k  m  n  n + k  m  (n  m) + k
n+k∸m k z≤n = ≡.refl
n+k∸m k (s≤s m≤n) = n+k∸m k m≤n

factor-+-∸ :  {b x y}  x  b  y  b  (b  x) + (b  y)  2* b  (x + y)
factor-+-∸ {b} {zero} {y} z≤n y≤b rewrite ℕ°.+-comm b (b  y) = ≡.sym (n+k∸m b y≤b)
factor-+-∸ (s≤s {x} {b} x≤b) z≤n             rewrite ℕ°.+-comm x 0 = ≡.sym (n+k∸m (suc b) x≤b)
factor-+-∸ (s≤s {x} {b} x≤b) (s≤s {y} y≤b)   rewrite factor-+-∸ x≤b y≤b
                                              | ℕ°.+-comm b (suc b)
                                              | ℕ°.+-comm x (suc y)
                                              | n+k∸m (suc y) x≤b
                                              | ℕ°.+-comm x y = ≡.refl

≤→≢1+ :  {x y}  x  y  x  suc y
≤→≢1+ z≤n     ()
≤→≢1+ (s≤s p) q = ≤→≢1+ p (suc-injective q)

<→≢ :  {x y}  x < y  x  y
<→≢ (s≤s p) = ≤→≢1+ p

-- Triangular inequality
dist-sum :  x y z  dist x z  dist x y + dist y z
dist-sum zero    zero    z       = ℕ≤.refl
dist-sum zero    (suc y) zero    = z≤n
dist-sum zero    (suc y) (suc z) = s≤s (dist-sum zero y z)
dist-sum (suc x) zero    zero    = s≤s (ℕ≤.reflexive (ℕ°.+-comm 0 x))
dist-sum (suc x) (suc y) zero
  rewrite ℕ°.+-comm (dist x y) (suc y)
        | dist-sym x y = s≤s (dist-sum zero y x)
dist-sum (suc x) zero    (suc z) = ℕ≤.trans (dist-sum x zero z)
                                  (ℕ≤.trans (ℕ≤.reflexive (≡.cong₂ _+_ (dist-sym x 0) ≡.refl))
                                            (≤-step (ℕ≤.refl {x} +-mono ≤-step ℕ≤.refl)))
dist-sum (suc x) (suc y) (suc z) = dist-sum x y z

∸-assoc-+ :  x y z  x  y  z  x  (y + z)
∸-assoc-+ x       zero    z       = ≡.refl
∸-assoc-+ zero    (suc y) zero    = ≡.refl
∸-assoc-+ zero    (suc y) (suc z) = ≡.refl
∸-assoc-+ (suc x) (suc y) z       = ∸-assoc-+ x y z

_∸-tone_ :  {x y t u}  x  y  t  u  t  y  u  x
_∸-tone_ {y = y} z≤n t≤u = ℕ≤.trans (n∸m≤n y _) t≤u
s≤s x≤y ∸-tone z≤n = z≤n
s≤s x≤y ∸-tone s≤s t≤u = x≤y ∸-tone t≤u

∸-mono' :  k {x y}  x  y  x  k  y  k
∸-mono' k = _∸-tone_ (ℕ≤.refl {k})

∸-anti :  k {x y}  x  y  k  y  k  x
∸-anti k x≤y = _∸-tone_ x≤y (ℕ≤.refl {k})

{-
post--ulate
  dist-≤     : ∀ x y → dist x y ≤ x
  dist-mono₁ : ∀ x y z t → x ≤ y → dist z t ≤ dist (x + z) (y + t)
-}

-- Haskell
-- let dist x y = abs (x - y)
-- quickCheck (forAll (replicateM 3 (choose (0,100))) (\ [x,y,z] -> dist (x * y) (x * z) == x * dist y z))

infix 8 _^_
_^_ :     
b ^ zero  = 1
b ^ suc n = b * b ^ n

2^_ :   
2^ n = ⟨2^ n * 1 

2^-spec :  n  2^ n  2 ^ n
2^-spec zero = ≡.refl
2^-spec (suc n) rewrite 2^-spec n | 2*-spec (2 ^ n) = ≡.refl

2^*-spec :  m n  2^⟨ m ⟩* n  2 ^ m * n
2^*-spec zero    n rewrite ℕ°.+-comm n 0 = ≡.refl
2^*-spec (suc m) n rewrite 2^*-spec m n
                         | ℕ°.*-assoc 2 (2 ^ m) n
                         | ℕ°.+-comm (2 ^ m * n) 0 = ≡.refl

1≤2^ :  n  2^ n  1
1+≤2^ :  n  2^ n  1 + n
1+≤2^ zero    = s≤s z≤n
1+≤2^ (suc n) = (1≤2^ n) +-mono (1+≤2^ n)

1≤2^ n  = ℕ≤.trans (s≤s z≤n) (1+≤2^ n)

≤-steps′ :  {x} y  x  x + y
≤-steps′ {x} y rewrite ℕ°.+-comm x y = ≤-steps y ℕ≤.refl

-- https://en.wikipedia.org/wiki/Hyper_operator
_↑⟨_⟩_ :       
a ↑⟨ suc n              (suc b) = a ↑⟨ n  (a ↑⟨ suc n  b)
a ↑⟨ 0                  b       = suc b
a ↑⟨ 1                  0       = a
a ↑⟨ 2                  0       = 0
a ↑⟨ suc (suc (suc n))  0       = 1

module ↑-Props where
  ↑-fold :  a n b  a ↑⟨ suc n  b  fold (a ↑⟨ suc n  0) (_↑⟨_⟩_ a n) b
  ↑-fold a n zero = ≡.refl
  ↑-fold a n (suc b) = ≡.cong (_↑⟨_⟩_ a n) (↑-fold a n b)

  ↑₀-+ :  a b  a ↑⟨ 0  b  1 + b
  ↑₀-+ a b = ≡.refl

  ↑₁-+ :  a b  a ↑⟨ 1  b  b + a
  ↑₁-+ a zero    = ≡.refl
  ↑₁-+ a (suc b) = ≡.cong suc (↑₁-+ a b)

  ↑₂-* :  a b  a ↑⟨ 2  b  b * a
  ↑₂-* a zero    = ≡.refl
  ↑₂-* a (suc b) rewrite ↑₂-* a b
                       | ↑₁-+ a (b * a)
                       | ℕ°.+-comm (b * a) a
                       = ≡.refl

  -- fold 1 (_*_ a) b ≡ a ^ b
  ↑₃-^ :  a b  a ↑⟨ 3  b  a ^ b
  ↑₃-^ a zero = ≡.refl
  ↑₃-^ a (suc b) rewrite ↑₃-^ a b
                       | ↑₂-* a (a ^ b)
                       | ℕ°.*-comm (a ^ b) a
                       = ≡.refl

  _↑⟨_⟩0 :     
  a ↑⟨ 0                 ⟩0 = 1
  a ↑⟨ 1                 ⟩0 = a
  a ↑⟨ 2                 ⟩0 = 0
  a ↑⟨ suc (suc (suc n)) ⟩0 = 1

  _`↑⟨_⟩_ :       
  _`↑⟨_⟩_ a 0       = suc
  _`↑⟨_⟩_ a (suc n) = fold (a ↑⟨ suc n ⟩0) (_`↑⟨_⟩_ a n)

  ↑-ind-rule :  a n b  a ↑⟨ suc n  (suc b)  a ↑⟨ n  (a ↑⟨ suc n  b)
  ↑-ind-rule a n b = ≡.refl

  _↑′⟨_⟩_ :       
  a ↑′⟨ 0  b = suc b
  a ↑′⟨ 1  b = a + b
  a ↑′⟨ 2  b = a * b
  a ↑′⟨ 3  b = a ^ b
  a ↑′⟨ suc (suc (suc (suc n)))  b = a ↑⟨ 4 + n  b

  ↑-↑′ :  a n b  a ↑⟨ n  b  a ↑′⟨ n  b
  ↑-↑′ a 0 b = ≡.refl
  ↑-↑′ a 1 b = ≡.trans (↑₁-+ a b) (ℕ°.+-comm b a)
  ↑-↑′ a 2 b = ≡.trans (↑₂-* a b) (ℕ°.*-comm b a)
  ↑-↑′ a 3 b = ↑₃-^ a b
  ↑-↑′ a (suc (suc (suc (suc _)))) b = ≡.refl

  _↑2+⟨_⟩_ :       
  _↑2+⟨_⟩_ a = fold (_*_ a) (fold 1)

module InflModule where
  -- Inflationary functions
  Infl< : (f :   )  Set
  Infl< f =  {x}  x < f x

  Infl : (f :   )  Set
  Infl f = Infl< (suc  f)

  InflT< : (f : Endo (Endo ))  Set
  InflT< f =  {g}  Infl< g  Infl< (f g)

{-
∀ {x} → x ≤ f x


  1 + x ≤ 1 + f x
  x < 1 + f x
  x < (suc ∘ f) x
  Infl< (suc ∘ f)

  Infl< f = ∀ {x} → 1 + x ≤ f x
  Infl< f = ∀ {x} → 1 + x ≤ f x

Infl< f → Infl f
Infl< f → Infl< (suc ∘ f)
-}

  id-infl : Infl id
  id-infl = ℕ≤.refl

  ∘-infl< :  {f g}  Infl< f  Infl< g  Infl< (f  g)
  ∘-infl< inflf< inflg< = <-trans inflg< inflf<

  suc-infl< : Infl< suc
  suc-infl< = ℕ≤.refl

  suc-infl : Infl suc
  suc-infl = s≤s (≤-step ℕ≤.refl)

  nest-infl :  f (finfl : Infl f) n  Infl (nest n f)
  nest-infl f _ zero = ℕ≤.refl
  nest-infl f finfl (suc n) = ℕ≤.trans (nest-infl f finfl n) finfl

  nest-infl< :  f (finfl< : Infl< f) n  Infl< (nest (suc n) f)
  nest-infl< f finfl< zero = finfl<
  nest-infl< f finfl< (suc n) = <-trans (nest-infl< f finfl< n) finfl< 

-- See Function.NP.nest-Properties for more properties
module fold-Props where

  fold-suc :  m n  fold m suc n  n + m
  fold-suc m zero = ≡.refl
  fold-suc m (suc n) rewrite fold-suc m n = ≡.refl

  fold-+ :  m n  fold 0 (_+_ m) n  n * m
  fold-+ m zero = ≡.refl
  fold-+ m (suc n) rewrite fold-+ m n = ≡.refl

  fold-* :  m n  fold 1 (_*_ m) n  m ^ n
  fold-* m zero = ≡.refl
  fold-* m (suc n) rewrite fold-* m n = ≡.refl

{- TODO
  fold-^ : ∀ m n → fold 1 (flip _^_ m) n ≡ m ↑⟨ 4 ⟩ n
  fold-^ m zero = ≡.refl
  fold-^ m (suc n) rewrite fold-^ m n = ?
-}

  cong-fold :  {A : Set} {f g : Endo A} (f≗g : f  g) {z}  fold z f  fold z g
  cong-fold eq zero = ≡.refl
  cong-fold eq {z} (suc x) rewrite cong-fold eq {z} x = eq _

  private
   open ↑-Props
   module Alt↑2 where
    alt :       
    alt a 0       = λ b  a ↑⟨ 2  b
    alt a (suc n) = fold 1 (alt a n)

    alt-ok :  a n  _↑2+⟨_⟩_ a n  alt a n
    alt-ok a zero = ≡.sym  ↑-↑′ a 2
    alt-ok a (suc n) = cong-fold (alt-ok a n)

{- TODO
    alt' : ∀ a n → _↑2+⟨_⟩_ a n ≗ _↑⟨_⟩_ a (2 + n)
    alt' a zero  b = ≡.sym (↑-↑′ a 2 _)
    alt' a (suc n) zero = ≡.refl
    alt' a (suc n) (suc x) rewrite alt' a n (_↑2+⟨_⟩_ a (suc n) x)
       = ≡.cong (_↑⟨_⟩_ a (2 + n)) { fold 1 (fold (_*_ a) (fold 1) n) x} {a ↑⟨ suc (suc (suc n)) ⟩ x} (alt' a (suc n) x)
-}

  open InflModule
{-
  fold1-infl : ∀ f → Infl f → Infl (fold 1 f)
  fold1-infl f finfl {zero} = {!z≤n!}
  fold1-infl f finfl {suc x} =
     x          <⟨ {!s≤s (fold1-infl f finfl {x})!} ⟩
     fold 1 f x <⟨ {!!} ⟩
     {- f (fold 1 f x) ≤⟨ finfl ⟩
     f (fold 1 f x) ≡⟨ ≡.refl ⟩ -}
     fold 1 f (1 + x)
   ∎
     where
       open Props
       open ≤-Reasoning
-}

{-
  fold1+1-infl< : ∀ (f : ℕ → ℕ) → Infl< (f ∘ suc) → Infl< (fold 1 f ∘ suc)
  fold1+1-infl< f finfl< {zero} = finfl<
  fold1+1-infl< f finfl< {suc x} =
     2 + x ≤⟨ s≤s (fold1+1-infl< f finfl< {x}) ⟩
     1 + f (fold 1 f x) ≤⟨ finfl< {f (fold 1 f x)} ⟩
     f (suc (f (fold 1 f x))) ≤⟨ {!!} ⟩
     fold 1 f (2 + x)
   ∎
     where
       open Props
       open ≤-Reasoning
-}
{-
  fold1+1-infl< : ∀ (f : ℕ → ℕ) → Infl< (f ∘ suc) → Infl< (fold 1 (f ∘ suc))
  fold1+1-infl< f finfl< {zero} = s≤s z≤n
  fold1+1-infl< f finfl< {suc x} =
     2 + x ≤⟨ s≤s (fold1+1-infl< f finfl< {x}) ⟩
     1 + fold 1 (f ∘ suc) x ≤⟨ finfl< ⟩
     fold 1 (f ∘ suc) (suc x)
   ∎
     where
       open Props
       open ≤-Reasoning
-}
{-
  fold1+-infl< : ∀ k f → Infl< (f ∘′ _+_ k) → Infl< (fold 1 (f ∘′ _+_ k))
  fold1+-infl< k f finfl< {zero} = s≤s z≤n
  fold1+-infl< k f finfl< {suc x} =
     2 + x ≤⟨ s≤s (fold1+-infl< k f finfl< {x}) ⟩
     1 + fold 1 (f ∘ _+_ k) x ≤⟨ finfl< ⟩
     fold 1 (f ∘ _+_ k) (suc x)
   ∎
     where
       open Props
       open ≤-Reasoning
-}
  
{-
  fold1+-infl< : ∀ f → Infl+2< f → Infl+2< (fold 1 f)
  fold1+-infl< f finfl< {zero} _ = ℕ≤.refl
  fold1+-infl< f finfl< {suc zero} _ = {!!}
  fold1+-infl< f finfl< {suc (suc zero)} _ = {!!}
  fold1+-infl< f finfl< {suc (suc (suc x))} x>1 =
     4 + x ≤⟨ s≤s (fold1+-infl< f finfl< {suc (suc x)} (m≤m+n 2 x)) ⟩
     1 + fold 1 f (2 + x) ≤⟨ finfl< {!!} ⟩
     fold 1 f (3 + x)
   ∎
     where
       open Props
       open ≤-Reasoning
-}
{-
  fold1-infl< f finfl< {zero} = s≤s z≤n
  fold1-infl< f finfl< {suc x} =
     2 + x ≤⟨ s≤s (fold1-infl< f finfl< {x}) ⟩
     1 + fold 1 f x ≤⟨ finfl< ⟩
     fold 1 f (suc x)
   ∎
     where
       open Props
       open ≤-Reasoning
-}
module ^-Props where
  open ≡-Reasoning

  ^1 :  n  n ^ 1  n
  ^1 zero = ≡.refl
  ^1 (suc n) = ≡.cong suc (proj₂ ℕ°.*-identity n)

  ^-+ :  b m n  b ^ (m + n)  b ^ m * b ^ n
  ^-+ b zero n = ≡.sym (proj₂ ℕ°.+-identity (b ^ n))
  ^-+ b (suc m) n rewrite ^-+ b m n = ≡.sym (ℕ°.*-assoc b (b ^ m) (b ^ n))

  ^-* :  b m n  b ^ (m * n)  (b ^ n) ^ m
  ^-* b zero    n = ≡.refl
  ^-* b (suc m) n = b ^ (n + m * n)
                  ≡⟨ ^-+ b n (m * n) 
                    b ^ n * b ^ (m * n)
                  ≡⟨ ≡.cong (_*_ (b ^ n)) (^-* b m n) 
                    b ^ n * (b ^ n) ^ m 

ack :     
ack zero n          = suc n
ack (suc m) zero    = ack m (suc zero)
ack (suc m) (suc n) = ack m (ack (suc m) n)

≤⇒∃ :  {m n}  m  n   λ k  m + k  n
≤⇒∃ z≤n      = _ , ≡.refl
≤⇒∃ (s≤s pf) = _ , ≡.cong suc (proj₂ (≤⇒∃ pf))

module ack-Props where
  lem∸ :  {m n}  m  n  m + (n  m)  n
  lem∸ z≤n = ≡.refl
  lem∸ (s≤s {m} {n} m≤n) = ≡.cong suc (lem∸ m≤n)

  -- n >= m → m + (n ∸ m) ≡ n
  -- n >= m → ∃ k → n ≡ m + k
  -- ∃ k → n ≡ m + k → m + (n ∸ m) ≡ n
  -- ∀ k → n ≡ m + k → m + (n ∸ m) ≡ n
  -- ∀ k → m + ((m + k) ∸ m) ≡ m + k
  -- ∀ k → m + k ≡ m + k

  -- 3 ≤ x → P x → ∃ λ k → P (3 + k)

  open InflModule

  fold1+-inflT< :  {z}  InflT< (fold (suc z))
  fold1+-inflT<     _      {zero} = s≤s z≤n
  fold1+-inflT< {z} {f} finfl< {suc x} =
     2 + x                ≤⟨ s≤s (fold1+-inflT< {z} {f} finfl< {x}) 
     1 + fold (suc z) f x ≤⟨ finfl< 
     f (fold (suc z) f x) ≡⟨ ≡.refl 
     fold (suc z) f (1 + x)
   
     where open ≤-Reasoning

  Mon : (f :   )  Set
  Mon f =  {x y}  x  y  f x  f y
  open InflModule


  ℕ-ind :  (P :   Set)  P zero  (∀ {n}  P n  P (suc n))   {n}  P n
  ℕ-ind P P0 PS {zero} = P0
  ℕ-ind P P0 PS {suc n} = PS (ℕ-ind P P0 PS)

  open fold-Props
  fold-infl< :  {f g}  Infl< f  InflT< g   {n}  Infl< (fold f g n)
  fold-infl< {f} {g} inflf< inflTg< {n} = ℕ-ind (Infl<  fold f g) inflf< inflTg< {n}

  fold-mon :  {f} (fmon : Mon f) (finfl< : Infl< f) {z}  Mon (fold z f)
  fold-mon fmon finfl< {_} {y = 0} z≤n = ℕ≤.refl
  fold-mon {f} fmon finfl< {z} {y = suc n} z≤n = z ≤⟨ ≤-step ℕ≤.refl 
                                              suc z ≤⟨ nest-infl< f finfl< n {z} 
                                              fold z f (suc n) ≡⟨ ≡.refl 
                                              fold z f (suc n) 
    where open ≤-Reasoning
  fold-mon fmon finfl< (s≤s m≤n) = fmon (fold-mon fmon finfl< m≤n)

  MonT : Endo (Endo )  Set
  MonT g =  {f}  Mon f  Infl< f  Mon (g f)

  fold-mon' :  {f g}  Mon f  Infl< f  MonT g  InflT< g   {n}  Mon (fold f g n)
  fold-mon' {f} {g} mon-f infl-f mont-g inflTg< {n} = go n where
    go :  n  Mon (fold f g n)
    go zero    = mon-f
    go (suc n) = mont-g (go n) (fold-infl< infl-f inflTg< {n})


  --  +-fold : ∀ a b → a + b ≡ fold a suc b
  --  *-fold : ∀ a b → a * b ≡ fold 0 (_+_ a) b

  1≤1+a^b :  a b  1  (1 + a) ^ b
  1≤1+a^b a zero = s≤s z≤n
  1≤1+a^b a (suc b) = 1≤1+a^b a b +-mono z≤n

  1+a^-mon :  {a}  Mon (_^_ (1 + a))
  1+a^-mon {a} (z≤n {b}) = 1≤1+a^b a b
  1+a^-mon {a} (s≤s {m} {n} m≤n)
     = (1 + a) ^ (1 + m)             ≡⟨ ≡.refl 
       (1 + a) ^ m + a * (1 + a) ^ m ≤⟨ (1+a^-mon m≤n) +-mono ((a ) *-mono (1+a^-mon m≤n)) 
       (1 + a) ^ n + a * (1 + a) ^ n ≡⟨ ≡.refl 
       (1 + a) ^ (1 + n) 
    where open ≤-Reasoning

  lem2^3 :  n  2 ^ 3  2 ^ (3 + n)
  lem2^3 n = 1+a^-mon {1} {3} {3 + n} (s≤s (s≤s (s≤s z≤n)))

  lem2221 :  m  2  2 ↑⟨ 2 + m  1
  lem2221 zero = ≡.refl
  lem2221 (suc m) = lem2221 m

  lem4212 :  m  4  2 ↑⟨ 1 + m  2
  lem4212 zero = ≡.refl
  lem4212 (suc m) = 4                            ≡⟨ lem4212 m 
                    2 ↑⟨ 1 + m  2               ≡⟨ ≡.cong (_↑⟨_⟩_ 2 (1 + m)) (lem2221 m) 
                    2 ↑⟨ 1 + m  (2 ↑⟨ 2 + m  1) ≡⟨ ≡.refl 
                    2 ↑⟨ 2 + m  2 
    where open ≡-Reasoning

  2* = _*_ 2

  -- fold 2* n 1 ≡ 2 ^ n

  -- nest-* : ∀ m n → nest (m * n) f ≗ nest m (nest n f)

  nest-2* :  m n  nest (m * n) (fold 1) 2*  nest m (nest n (fold 1)) 2*
  nest-2* m n = nest-Properties.nest-* (fold 1) m n 2*

{-
  lem3≤ : ∀ n → 3 ≤ fold 2* (fold 1) n 2
  lem3≤ 0 = s≤s (s≤s (s≤s z≤n))
    where open ≤-Reasoning
  lem3≤ (suc n) = 
    3 ≤⟨ {!!} ⟩
    fold 2* f1 (1 + n) 2 ∎
    where open ≤-Reasoning
          f1 = fold 1

  lem3≤' : ∀ n → 3 ≤ fold 2* (fold 1) n 3
  lem3≤' 0 = s≤s (s≤s (s≤s z≤n))
    where open ≤-Reasoning
  lem3≤' (suc n) = 
    3 ≤⟨ lem3≤ n ⟩
    fold 2* (fold 1) n 2 ≡⟨ ≡.refl ⟩
    fold 2* (fold 1) n (fold 2* (fold 1) 3 1) ≡⟨ {!!} ⟩
{- ≡⟨ nest-Properties.nest-* {!2*!} {!!} {!!} {!!} ⟩
    fold 2* (fold 1) (3 * n) 1 ≡⟨ {!!} ⟩
-}
    fold 1 (fold 2* (fold 1) n) 3 ≡⟨ ≡.refl ⟩
    fold 2* (fold 1) (1 + n) 3 ∎
    where open ≤-Reasoning
-}
---

{-
fold 2* (fold 1) (3 * n) 1 ≤

fold 2* (fold 1) n (fold 2* (fold 1) n (fold 2* (fold 1) n 1)) ≤

fold 1 (fold 2* (fold 1) n) 3 ≤
fold 2* (fold 1) (1 + n) 3
-}

{-
  open ↑-Props

  -*⟨1+n⟩-infl : ∀ n → Infl (_*_ (1 + n))
  -*⟨1+n⟩-infl n = {!!}

  lem121 : ∀ a b → b < (1 + a) ↑⟨ 2 ⟩ (1 + b)
  lem121 a b rewrite ↑₂-* (1 + a) (1 + b)
     = 1 + b
              ≤⟨ m≤m+n _ _ ⟩
       (1 + a) * (1 + b)
              ≡⟨ ℕ°.*-comm (1 + a) (1 + b) ⟩
       (1 + b) * (1 + a)
     ∎
     where open ≤-Reasoning

  -- ∀ a b → b < (2 + a) * b
  lem222 : ∀ a b → b < (2 + a) ↑⟨ 2 ⟩ (2 + b)
  lem222 a b rewrite ↑₂-* (2 + a) (2 + b)
     = 1 + b
              ≤⟨ suc-infl ⟩
       2 + b
              ≤⟨ m≤m+n _ _ ⟩
       (2 + a) * (2 + b)
              ≡⟨ ℕ°.*-comm (2 + a) (2 + b) ⟩
       (2 + b) * (2 + a)
     ∎
     where open ≤-Reasoning
-}
{-
  open fold-Props

  module Foo a where
    f = λ n b → (2 + a) ↑2+⟨ n ⟩ b
    f-lem : ∀ n → f (suc n) ≗ fold 1 (f n)
    f-lem n x = ≡.refl

    f2 = λ n b → (2 + a) ↑2+⟨ n ⟩ (2 + b)
    f2-lem : ∀ n → f2 (suc n) ≗ fold 1 (f2 n)
    f2-lem n x = {!!}

  -- b < (1 + a) * (1 + b)

 -- nest-infl< : ∀ f (finfl< : Infl< f) n → Infl< (nest (suc n) f)
  infl3< : ∀ a n → Infl< (λ b → (1 + a) ↑2+⟨ n ⟩ (1 + b))
  infl3< a zero {b} = lem121 a b
  infl3< a (suc n) {b}
    = 1 + b
 --  fold1-infl< : ∀ f → Infl< f → ∀ x → x < fold 1 f x
            ≤⟨ {!fold1f2-infl< {_}!} ⟩
      fold 1 f1 b
            ≤⟨ {!!} ⟩
{-
            ≤⟨ fold1-infl< (f 0) (λ {x} → {!infl3< a n {x}!}) {{!!}} ⟩
      {!!}
            ≤⟨ {!!} ⟩
-}
{-
      1 + b
      (2 + a) ↑2+⟨ n ⟩ (2 + b)
            ≤⟨ {!nest-infl< (λ b → (2 + a) ↑2+⟨ n ⟩ b) ? b {(2 + a) ↑2+⟨ n ⟩ (2 + b)}!} ⟩
      fold (f 0 1) (f 0) (1 + b)
            ≤⟨ {!ℕ≤.reflexive (≡.cong (λ g → g 1) (nest-Properties.nest-+ (f 0) 1 (1 + b)))!} ⟩
-}
      fold 1 (f 0) (1 + b)
            ≡⟨ ≡.refl ⟩
      f 1 (1 + b)
            ≡⟨ ≡.refl ⟩
      (1 + a) ↑2+⟨ suc n ⟩ (1 + b)
    ∎

     where
       f = λ k b → (1 + a) ↑2+⟨ k + n ⟩ b
       f1 = f 0 ∘ suc

       -- fold1f2-infl< : Infl< (fold 1 f2)
       -- fold1f2-infl< = fold1-infl< f2 {!(λ b → infl3< a n b ?)!}

       fold1f1-infl<' : Infl< (fold 1 f1)
       fold1f1-infl<' = {!fold1+1-infl< (f 0) {!infl3< a n!}!}
       lem : ∀ x → f 0 (1 + x) < f 0 (f 0 x)
       lem x = {!!}
       postulate
         finfl : Infl< (f 0)
       open ≤-Reasoning
-}

_⇑⟨_,_⟩_ : (a n k b : )  
a ⇑⟨ n , k  b = fold k f n
  module M⇑ where 
    f :   
    f x = a ↑⟨ 2 + x  b

module ⇑-Props where
  _⇑′⟨_,_⟩_ : (a n k b : )  
  a ⇑′⟨ n₀ , k  b = g n₀
    module M⇑′ where
      h :   
      h x = a ↑⟨ 2 + x  b

      g :   
      g 0       = k
      g (suc n) = h (g n)

      g-nest :  n  g n  h $⟨ n  k
      g-nest zero = ≡.refl
      g-nest (suc n) rewrite g-nest n = ≡.refl

  ⇑₀ :  a k b  a ⇑⟨ 0 , k  b  k
  ⇑₀ _ _ _ = ≡.refl

  ⇑₁ :  a k b  a ⇑⟨ 1 , k  b  a ↑⟨ 2 + k  b
  ⇑₁ _ _ _ = ≡.refl

  ⇑-⇑′ :  a n k b  a ⇑⟨ n , k  b  a ⇑′⟨ n , k  b
  ⇑-⇑′ a n k b rewrite M⇑′.g-nest a n k b n = ≡.refl

-- https://en.wikipedia.org/wiki/Graham%27s_number
Graham's-number : 
Graham's-number = 3 ⇑⟨ 64 , 4  3
  -- = (f∘⁶⁴…∘f)4
  -- where f x = 3 ↑⟨ 2 + x ⟩ 3

{-
module GeneralisedArithmetic {a} {A : Set a} (0# : A) (1+ : A → A) where

  1# : A
  1# = 1+ 0#

  open Data.Nat.GeneralisedArithmetic 0# 1+ public

  exp : (* : A → A → A) → (ℕ → A → A)
  exp _*_ n b = fold 1# (λ s → b * s) n
-}
  -- hyperop a n b = fold exp

module == where
  _≈_ : (m n : )  Set
  m  n = T (m == n)

  subst :  {}  Substitutive _≈_ 
  subst _ {zero}  {zero}  _  = id
  subst P {suc _} {suc _} p  = subst (P  suc) p
  subst _ {zero}  {suc _} ()
  subst _ {suc _} {zero}  ()

  sound :  m n  T (m == n)  m  n
  sound m n p = subst (_≡_ m) p ≡.refl

  refl : Reflexive _≈_
  refl {zero}  = _
  refl {suc n} = refl {n}

  sym : Symmetric _≈_
  sym {m} {n} eq rewrite sound m n eq = refl {n}

  trans : Transitive _≈_
  trans {m} {n} {o} m≈n n≈o rewrite sound m n m≈n | sound n o n≈o = refl {o}

  setoid : Setoid _ _
  setoid = record { Carrier = ; _≈_ = _≈_
                  ; isEquivalence =
                      record { refl = λ {x}  refl {x}
                             ; sym = λ {x} {y}  sym {x} {y}
                             ; trans = λ {x} {y} {z}  trans {x} {y} {z} } }

  open Setoid setoid public hiding (refl; sym; trans; _≈_)

{-
data _`≤?`_↝_ : (m n : ℕ) → Dec (m ≤ n) → Set where
  z≤?n     : ∀ {n} → zero `≤?` n ↝ yes z≤n
  s≤?z     : ∀ {m} → suc m `≤?` zero ↝ no λ()
  s≤?s-yes : ∀ {m n m≤n} → m `≤?` n ↝ yes m≤n → suc m `≤?` suc n ↝ yes (s≤s m≤n)
  s≤?s-no  : ∀ {m n m≰n} → m `≤?` n ↝ no m≰n → suc m `≤?` suc n ↝ no (m≰n ∘ ≤-pred)

`≤?`-complete : ∀ m n → m `≤?` n ↝ (m ≤? n)
`≤?`-complete zero n = z≤?n
`≤?`-complete (suc n) zero = {!s≤?z!}
`≤?`-complete (suc m) (suc n) with m ≤? n | `≤?`-complete m n
... | yes q | r = s≤?s-yes r
... | no q  | r = s≤?s-no {!!}
-}

_<=_ : (x y : )  Bool
zero   <= _      = true
suc _  <= zero   = false
suc m  <= suc n  = m <= n

module <= where
   :     Set
   x y = T (x <= y)

  sound :  m n   m n  m  n
  sound zero    _       _  = z≤n
  sound (suc m) (suc n) p  = s≤s (sound m n p)
  sound (suc m) zero    ()

  complete :  {m n}  m  n   m n
  complete z≤n       = _
  complete (s≤s m≤n) = complete m≤n

  isTotalOrder : IsTotalOrder _≡_ 
  isTotalOrder = record { isPartialOrder = isPartialOrder; total = λ x y  ⊎-map complete complete (ℕ≤.total x y) }
   where
    reflexive :  {i j}  i  j   i j
    reflexive {i} ≡.refl = complete (ℕ≤.refl {i})
    trans : Transitive 
    trans {x} {y} {z} p q = complete (ℕ≤.trans (sound x y p) (sound y z q))
    isPreorder : IsPreorder _≡_ 
    isPreorder = record { isEquivalence = ≡.isEquivalence
                        ; reflexive = reflexive
                        ; trans = λ {x} {y} {z}  trans {x} {y} {z} }
    antisym : Antisymmetric _≡_ 
    antisym {x} {y} p q = ℕ≤.antisym (sound x y p) (sound y x q)
    isPartialOrder : IsPartialOrder _≡_ 
    isPartialOrder = record { isPreorder = isPreorder; antisym = antisym }

  open IsTotalOrder isTotalOrder public

<=-steps′ :  {x} y  T (x <= (x + y))
<=-steps′ {x} y = <=.complete (≤-steps′ {x} y)

sucx∸y≤suc⟨x∸y⟩ :  x y  suc x  y  suc (x  y)
sucx∸y≤suc⟨x∸y⟩ x zero = ℕ≤.refl
sucx∸y≤suc⟨x∸y⟩ zero (suc y) rewrite 0∸n≡0 y = z≤n
sucx∸y≤suc⟨x∸y⟩ (suc x) (suc y) = sucx∸y≤suc⟨x∸y⟩ x y

x≤2y′→x∸y≤y :  x y  x  2*′ y  x  y  y
x≤2y′→x∸y≤y x zero p = p
x≤2y′→x∸y≤y zero (suc y) p = z≤n
x≤2y′→x∸y≤y (suc zero) (suc y) (s≤s p) rewrite 0∸n≡0 y = z≤n
x≤2y′→x∸y≤y (suc (suc x)) (suc y) (s≤s (s≤s p))
  = ℕ≤.trans (sucx∸y≤suc⟨x∸y⟩ x y) (s≤s (x≤2y′→x∸y≤y x y p))

x<2y′→x∸y<y :  x y  x < 2*′ y  x  y < y
x<2y′→x∸y<y x zero p = p
x<2y′→x∸y<y zero (suc y) p = s≤s z≤n
x<2y′→x∸y<y (suc zero) (suc y) (s≤s (s≤s p)) rewrite 0∸n≡0 y = s≤s z≤n
x<2y′→x∸y<y (suc (suc x)) (suc y) (s≤s (s≤s p))
  = ℕ≤.trans (s≤s (sucx∸y≤suc⟨x∸y⟩ x y)) (s≤s (x<2y′→x∸y<y x y p))

x<2y→x∸y<y :  x y  x < 2* y  x  y < y
x<2y→x∸y<y x y p rewrite ≡.sym (2*′-spec y) = x<2y′→x∸y<y x y p

≰→< :  x y  x  y  y < x
≰→< x y p with ℕcmp.compare (suc y) x
≰→< x y p | tri< a ¬b ¬c = ℕ≤.trans (s≤s (≤-step ℕ≤.refl)) a
≰→< x y p | tri≈ ¬a b ¬c = ℕ≤.reflexive b
≰→< x y p | tri> ¬a ¬b c = ⊥-elim (p (≤-pred c))

¬≤ :  {m n}  ¬(m < n)  n  m
¬≤ {m} {n} p with ℕcmp.compare m n
... | tri< m<n _ _   = ⊥-elim (p m<n)
... | tri≈ _ eq _    = ℕ≤.reflexive (≡.sym eq)
... | tri> _ _ 1+n≤m = ≤-pred (Props.≤-steps 1 1+n≤m)

not<=→< :  x y  T (not (x <= y))  T (suc y <= x)
not<=→< x y p = <=.complete (≰→< x y (T'not'¬ p  <=.complete))