------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of relations to lists
------------------------------------------------------------------------

module Relation.Binary.List.Pointwise where

open import Function
open import Data.Product hiding (map)
open import Data.List hiding (map)
open import Level
open import Relation.Nullary
open import Relation.Binary renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)

infixr 5 _∷_

data Rel {a b } {A : Set a} {B : Set b}
         (_∼_ : REL A B ) : List A  List B  Set (a  b  ) where
  []  : Rel _∼_ [] []
  _∷_ :  {x xs y ys} (x∼y : x  y) (xs∼ys : Rel _∼_ xs ys) 
        Rel _∼_ (x  xs) (y  ys)

head :  {a b } {A : Set a} {B : Set b} {_∼_ : REL A B } {x y xs ys} 
       Rel _∼_ (x  xs) (y  ys)  x  y
head (x∼y  xs∼ys) = x∼y

tail :  {a b } {A : Set a} {B : Set b} {_∼_ : REL A B } {x y xs ys} 
       Rel _∼_ (x  xs) (y  ys)  Rel _∼_ xs ys
tail (x∼y  xs∼ys) = xs∼ys

rec :  {a b c } {A : Set a} {B : Set b} {_∼_ : REL A B }
      (P :  {xs ys}  Rel _∼_ xs ys  Set c) 
      (∀ {x y xs ys} {xs∼ys : Rel _∼_ xs ys} 
         (x∼y : x  y)  P xs∼ys  P (x∼y  xs∼ys)) 
      P [] 
       {xs ys} (xs∼ys : Rel _∼_ xs ys)  P xs∼ys
rec P c n []            = n
rec P c n (x∼y  xs∼ys) = c x∼y (rec P c n xs∼ys)

map :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
        {_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} 
      _≈_  _∼_  Rel _≈_  Rel _∼_
map ≈⇒∼ []            = []
map ≈⇒∼ (x≈y  xs≈ys) = ≈⇒∼ x≈y  map ≈⇒∼ xs≈ys

reflexive :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
              {_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} 
            _≈_  _∼_  Rel _≈_  Rel _∼_
reflexive ≈⇒∼ []            = []
reflexive ≈⇒∼ (x≈y  xs≈ys) = ≈⇒∼ x≈y  reflexive ≈⇒∼ xs≈ys

refl :  {a } {A : Set a} {_∼_ : Rel₂ A } 
       Reflexive _∼_  Reflexive (Rel _∼_)
refl rfl {[]}     = []
refl rfl {x  xs} = rfl  refl rfl

symmetric :  {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
              {_≈_ : REL A B ℓ₁} {_∼_ : REL B A ℓ₂} 
            Sym _≈_ _∼_  Sym (Rel _≈_) (Rel _∼_)
symmetric sym []            = []
symmetric sym (x∼y  xs∼ys) = sym x∼y  symmetric sym xs∼ys

transitive :
   {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c}
    {_≋_ : REL A B ℓ₁} {_≈_ : REL B C ℓ₂} {_∼_ : REL A C ℓ₃} 
  Trans _≋_ _≈_ _∼_  Trans (Rel _≋_) (Rel _≈_) (Rel _∼_)
transitive trans []            []            = []
transitive trans (x∼y  xs∼ys) (y∼z  ys∼zs) =
  trans x∼y y∼z  transitive trans xs∼ys ys∼zs

antisymmetric :  {a ℓ₁ ℓ₂} {A : Set a}
                  {_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} 
                Antisymmetric _≈_ _≤_ 
                Antisymmetric (Rel _≈_) (Rel _≤_)
antisymmetric antisym []            []            = []
antisymmetric antisym (x∼y  xs∼ys) (y∼x  ys∼xs) =
  antisym x∼y y∼x  antisymmetric antisym xs∼ys ys∼xs

respects₂ :  {a ℓ₁ ℓ₂} {A : Set a}
              {_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} 
            _∼_ Respects₂ _≈_  (Rel _∼_) Respects₂ (Rel _≈_)
respects₂ {_≈_ = _≈_} {_∼_} resp =
   {xs} {ys} {zs}  resp¹ {xs} {ys} {zs}) ,
   {xs} {ys} {zs}  resp² {xs} {ys} {zs})
  where
  resp¹ :  {xs}  (Rel _∼_ xs) Respects (Rel _≈_)
  resp¹ []            []            = []
  resp¹ (x≈y  xs≈ys) (z∼x  zs∼xs) =
    proj₁ resp x≈y z∼x  resp¹ xs≈ys zs∼xs

  resp² :  {ys}  (flip (Rel _∼_) ys) Respects (Rel _≈_)
  resp² []            []            = []
  resp² (x≈y  xs≈ys) (x∼z  xs∼zs) =
    proj₂ resp x≈y x∼z  resp² xs≈ys xs∼zs

decidable :  {a b } {A : Set a} {B : Set b} {_∼_ : REL A B } 
            Decidable _∼_  Decidable (Rel _∼_)
decidable dec []       []       = yes []
decidable dec []       (y  ys) = no  ())
decidable dec (x  xs) []       = no  ())
decidable dec (x  xs) (y  ys) with dec x y
... | no ¬x∼y = no (¬x∼y  head)
... | yes x∼y with decidable dec xs ys
...           | no ¬xs∼ys = no (¬xs∼ys  tail)
...           | yes xs∼ys = yes (x∼y  xs∼ys)

isEquivalence :  {a } {A : Set a} {_≈_ : Rel₂ A } 
                IsEquivalence _≈_  IsEquivalence (Rel _≈_)
isEquivalence eq = record
  { refl  = refl       Eq.refl
  ; sym   = symmetric  Eq.sym
  ; trans = transitive Eq.trans
  } where module Eq = IsEquivalence eq

isPreorder :  {a ℓ₁ ℓ₂} {A : Set a}
               {_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} 
             IsPreorder _≈_ _∼_  IsPreorder (Rel _≈_) (Rel _∼_)
isPreorder pre = record
  { isEquivalence = isEquivalence Pre.isEquivalence
  ; reflexive     = reflexive     Pre.reflexive
  ; trans         = transitive    Pre.trans
  } where module Pre = IsPreorder pre

isDecEquivalence :  {a } {A : Set a}
                     {_≈_ : Rel₂ A }  IsDecEquivalence _≈_ 
                   IsDecEquivalence (Rel _≈_)
isDecEquivalence eq = record
  { isEquivalence = isEquivalence Dec.isEquivalence
  ; _≟_           = decidable     Dec._≟_
  } where module Dec = IsDecEquivalence eq

isPartialOrder :  {a ℓ₁ ℓ₂} {A : Set a}
                   {_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} 
                 IsPartialOrder _≈_ _≤_ 
                 IsPartialOrder (Rel _≈_) (Rel _≤_)
isPartialOrder po = record
  { isPreorder = isPreorder    PO.isPreorder
  ; antisym    = antisymmetric PO.antisym
  } where module PO = IsPartialOrder po

-- Rel _≡_ coincides with _≡_.

Rel≡⇒≡ :  {a} {A : Set a}  Rel {A = A} _≡_  _≡_
Rel≡⇒≡ []                    = PropEq.refl
Rel≡⇒≡ (PropEq.refl  xs∼ys) with Rel≡⇒≡ xs∼ys
Rel≡⇒≡ (PropEq.refl  xs∼ys) | PropEq.refl = PropEq.refl

≡⇒Rel≡ :  {a} {A : Set a}  _≡_  Rel {A = A} _≡_
≡⇒Rel≡ PropEq.refl = refl PropEq.refl

preorder :  {p₁ p₂ p₃}  Preorder p₁ p₂ p₃  Preorder _ _ _
preorder p = record
  { isPreorder = isPreorder (Preorder.isPreorder p)
  }

setoid :  {c }  Setoid c   Setoid _ _
setoid s = record
  { isEquivalence = isEquivalence (Setoid.isEquivalence s)
  }

decSetoid :  {c }  DecSetoid c   DecSetoid _ _
decSetoid d = record
  { isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d)
  }

poset :  {c ℓ₁ ℓ₂}  Poset c ℓ₁ ℓ₂  Poset _ _ _
poset p = record
  { isPartialOrder = isPartialOrder (Poset.isPartialOrder p)
  }