module Data.List.All.Properties where
open import Data.Bool
open import Data.Bool.Properties
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalent)
open import Data.List as List
import Data.List.Any as Any
open Any.Membership-≡
open import Data.List.All as All using (All; []; _∷_)
open import Data.Product
open import Relation.Unary using () renaming (_⊆_ to _⋐_)
All-map : ∀ {A B} {P : B → Set} {f : A → B} {xs} →
All (P ∘ f) xs → All P (List.map f xs)
All-map [] = []
All-map (p ∷ ps) = p ∷ All-map ps
map-All : ∀ {A B} {P : B → Set} {f : A → B} {xs} →
All P (List.map f xs) → All (P ∘ f) xs
map-All {xs = []} [] = []
map-All {xs = _ ∷ _} (p ∷ ps) = p ∷ map-All ps
gmap : ∀ {A B} {P : A → Set} {Q : B → Set} {f : A → B} →
P ⋐ Q ∘ f → All P ⋐ All Q ∘ List.map f
gmap g = All-map ∘ All.map g
All-all : ∀ {A} (p : A → Bool) {xs} →
All (T ∘ p) xs → T (all p xs)
All-all p [] = _
All-all p (px ∷ pxs) = Equivalent.from T-∧ ⟨$⟩ (px , All-all p pxs)
all-All : ∀ {A} (p : A → Bool) xs →
T (all p xs) → All (T ∘ p) xs
all-All p [] _ = []
all-All p (x ∷ xs) px∷xs with Equivalent.to (T-∧ {p x}) ⟨$⟩ px∷xs
all-All p (x ∷ xs) px∷xs | (px , pxs) = px ∷ all-All p xs pxs
anti-mono : ∀ {A} {P : A → Set} {xs ys} →
xs ⊆ ys → All P ys → All P xs
anti-mono xs⊆ys pys = All.tabulate (All.lookup pys ∘ xs⊆ys)
all-anti-mono : ∀ {A} (p : A → Bool) {xs ys} →
xs ⊆ ys → T (all p ys) → T (all p xs)
all-anti-mono p xs⊆ys = All-all p ∘ anti-mono xs⊆ys ∘ all-All p _