{-# OPTIONS --universe-polymorphism #-}
module Data.Maybe where
open import Level
open import Data.Maybe.Core public
open import Data.Bool using (Bool; true; false)
open import Data.Unit using (⊤)
boolToMaybe : Bool → Maybe ⊤
boolToMaybe true = just _
boolToMaybe false = nothing
maybeToBool : ∀ {a} {A : Set a} → Maybe A → Bool
maybeToBool (just _) = true
maybeToBool nothing = false
maybe : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → B → Maybe A → B
maybe j n (just x) = j x
maybe j n nothing = n
open import Function
open import Category.Functor
open import Category.Monad
open import Category.Monad.Identity
functor : RawFunctor Maybe
functor = record
{ _<$>_ = λ f → maybe (just ∘ f) nothing
}
monadT : ∀ {M} → RawMonad M → RawMonad (λ A → M (Maybe A))
monadT M = record
{ return = M.return ∘ just
; _>>=_ = λ m f → M._>>=_ m (maybe f (M.return nothing))
}
where module M = RawMonad M
monad : RawMonad Maybe
monad = monadT IdentityMonad
monadZero : RawMonadZero Maybe
monadZero = record
{ monad = monad
; ∅ = nothing
}
monadPlus : RawMonadPlus Maybe
monadPlus = record
{ monadZero = monadZero
; _∣_ = _∣_
}
where
_∣_ : ∀ {a : Set} → Maybe a → Maybe a → Maybe a
nothing ∣ y = y
just x ∣ y = just x
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl)
drop-just : ∀ {A : Set} {x y : A} → just x ≡ just y → x ≡ y
drop-just refl = refl
decSetoid : {A : Set} → Decidable (_≡_ {A = A}) → DecSetoid _ _
decSetoid {A} _A-≟_ = PropEq.decSetoid _≟_
where
_≟_ : Decidable (_≡_ {A = Maybe A})
just x ≟ just y with x A-≟ y
just x ≟ just .x | yes refl = yes refl
just x ≟ just y | no x≢y = no (x≢y ∘ drop-just)
just x ≟ nothing = no λ()
nothing ≟ just y = no λ()
nothing ≟ nothing = yes refl
open import Data.Empty using (⊥)
import Relation.Nullary.Decidable as Dec
data Any {a} {A : Set a} (P : A → Set a) : Maybe A → Set a where
just : ∀ {x} (px : P x) → Any P (just x)
data All {a} {A : Set a} (P : A → Set a) : Maybe A → Set a where
just : ∀ {x} (px : P x) → All P (just x)
nothing : All P nothing
IsJust : ∀ {a} {A : Set a} → Maybe A → Set a
IsJust = Any (λ _ → Lift ⊤)
IsNothing : ∀ {a} {A : Set a} → Maybe A → Set a
IsNothing = All (λ _ → Lift ⊥)
private
drop-just-Any : ∀ {A} {P : A → Set} {x} → Any P (just x) → P x
drop-just-Any (just px) = px
drop-just-All : ∀ {A} {P : A → Set} {x} → All P (just x) → P x
drop-just-All (just px) = px
anyDec : ∀ {A} {P : A → Set} →
(∀ x → Dec (P x)) → (x : Maybe A) → Dec (Any P x)
anyDec p nothing = no λ()
anyDec p (just x) = Dec.map′ just drop-just-Any (p x)
allDec : ∀ {A} {P : A → Set} →
(∀ x → Dec (P x)) → (x : Maybe A) → Dec (All P x)
allDec p nothing = yes nothing
allDec p (just x) = Dec.map′ just drop-just-All (p x)