{-# OPTIONS --universe-polymorphism #-}
module Function.Inverse where
open import Level
open import Function as Fun using (flip)
open import Function.Bijection hiding (id; _∘_)
open import Function.Equality as F
using (_⟶_) renaming (_∘_ to _⟪∘⟫_)
open import Function.Equivalence as Eq using (Equivalent; ⇔-setoid)
open import Function.LeftInverse as Left hiding (id; _∘_)
open import Function.Surjection as Surj hiding (id; _∘_)
open import Relation.Binary
import Relation.Binary.PropositionalEquality as P
record _InverseOf_ {f₁ f₂ t₁ t₂}
{From : Setoid f₁ f₂} {To : Setoid t₁ t₂}
(from : To ⟶ From) (to : From ⟶ To) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
field
left-inverse-of : from LeftInverseOf to
right-inverse-of : from RightInverseOf to
equivalent : Equivalent From To
equivalent = record
{ to = to
; from = from
}
record Inverse {f₁ f₂ t₁ t₂}
(From : Setoid f₁ f₂) (To : Setoid t₁ t₂) :
Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where
field
to : From ⟶ To
from : To ⟶ From
inverse-of : from InverseOf to
open _InverseOf_ inverse-of public
left-inverse : LeftInverse From To
left-inverse = record
{ to = to
; from = from
; left-inverse-of = left-inverse-of
}
open LeftInverse left-inverse public
using (injective; injection)
bijection : Bijection From To
bijection = record
{ to = to
; bijective = record
{ injective = injective
; surjective = record
{ from = from
; right-inverse-of = right-inverse-of
}
}
}
open Bijection bijection public
using (surjective; surjection; right-inverse)
infix 3 _⇿_
_⇿_ : ∀ {f t} → Set f → Set t → Set _
From ⇿ To = Inverse (P.setoid From) (P.setoid To)
map : ∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂}
{f₁′ f₂′ t₁′ t₂′}
{From′ : Setoid f₁′ f₂′} {To′ : Setoid t₁′ t₂′} →
(t : (From ⟶ To) → (From′ ⟶ To′)) →
(f : (To ⟶ From) → (To′ ⟶ From′)) →
(∀ {to from} → from InverseOf to → f from InverseOf t to) →
Inverse From To → Inverse From′ To′
map t f pres eq = record
{ to = t to
; from = f from
; inverse-of = pres inverse-of
} where open Inverse eq
zip : ∀ {f₁₁ f₂₁ t₁₁ t₂₁}
{From₁ : Setoid f₁₁ f₂₁} {To₁ : Setoid t₁₁ t₂₁}
{f₁₂ f₂₂ t₁₂ t₂₂}
{From₂ : Setoid f₁₂ f₂₂} {To₂ : Setoid t₁₂ t₂₂}
{f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} →
(t : (From₁ ⟶ To₁) → (From₂ ⟶ To₂) → (From ⟶ To)) →
(f : (To₁ ⟶ From₁) → (To₂ ⟶ From₂) → (To ⟶ From)) →
(∀ {to₁ from₁ to₂ from₂} →
from₁ InverseOf to₁ → from₂ InverseOf to₂ →
f from₁ from₂ InverseOf t to₁ to₂) →
Inverse From₁ To₁ → Inverse From₂ To₂ → Inverse From To
zip t f pres eq₁ eq₂ = record
{ to = t (to eq₁) (to eq₂)
; from = f (from eq₁) (from eq₂)
; inverse-of = pres (inverse-of eq₁) (inverse-of eq₂)
} where open Inverse
id : ∀ {s₁ s₂} → Reflexive (Inverse {s₁} {s₂})
id {x = S} = record
{ to = F.id
; from = F.id
; inverse-of = record
{ left-inverse-of = LeftInverse.left-inverse-of id′
; right-inverse-of = LeftInverse.left-inverse-of id′
}
} where id′ = Left.id {S = S}
infixr 9 _∘_
_∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} →
TransFlip (Inverse {f₁} {f₂} {m₁} {m₂})
(Inverse {m₁} {m₂} {t₁} {t₂})
(Inverse {f₁} {f₂} {t₁} {t₂})
f ∘ g = record
{ to = to f ⟪∘⟫ to g
; from = from g ⟪∘⟫ from f
; inverse-of = record
{ left-inverse-of = LeftInverse.left-inverse-of (Left._∘_ (left-inverse f) (left-inverse g))
; right-inverse-of = LeftInverse.left-inverse-of (Left._∘_ (right-inverse g) (right-inverse f))
}
} where open Inverse
private
module Dummy where
sym : ∀ {f₁ f₂ t₁ t₂} →
Sym (Inverse {f₁} {f₂} {t₁} {t₂}) (Inverse {t₁} {t₂} {f₁} {f₂})
sym inv = record
{ from = to
; to = from
; inverse-of = record
{ left-inverse-of = right-inverse-of
; right-inverse-of = left-inverse-of
}
} where open Inverse inv
setoid : (s₁ s₂ : Level) → Setoid (suc (s₁ ⊔ s₂)) (s₁ ⊔ s₂)
setoid s₁ s₂ = record
{ Carrier = Setoid s₁ s₂
; _≈_ = Inverse
; isEquivalence =
record {refl = id; sym = Dummy.sym; trans = flip _∘_}
}
data Kind : Set where
equivalent inverse : Kind
Isomorphism : Kind → ∀ {ℓ₁ ℓ₂} → Set ℓ₁ → Set ℓ₂ → Set _
Isomorphism inverse A B = Inverse (P.setoid A) (P.setoid B)
Isomorphism equivalent A B = Equivalent (P.setoid A) (P.setoid B)
⇿⇒ : ∀ {k x y} {X : Set x} {Y : Set y} →
Isomorphism inverse X Y → Isomorphism k X Y
⇿⇒ {inverse} = Fun.id
⇿⇒ {equivalent} = Inverse.equivalent
⇒⇔ : ∀ {k x y} {X : Set x} {Y : Set y} →
Isomorphism k X Y → Isomorphism equivalent X Y
⇒⇔ {inverse} = Inverse.equivalent
⇒⇔ {equivalent} = Fun.id
module EquationalReasoning where
private
refl : ∀ {k ℓ} → Reflexive (Isomorphism k {ℓ})
refl {inverse} = id
refl {equivalent} = Eq.id
trans : ∀ {k ℓ₁ ℓ₂ ℓ₃} →
Trans (Isomorphism k {ℓ₁} {ℓ₂})
(Isomorphism k {ℓ₂} {ℓ₃})
(Isomorphism k {ℓ₁} {ℓ₃})
trans {inverse} = flip _∘_
trans {equivalent} = flip Eq._∘_
sym : ∀ {k ℓ₁ ℓ₂} →
Sym (Isomorphism k {ℓ₁} {ℓ₂})
(Isomorphism k {ℓ₂} {ℓ₁})
sym {inverse} = Dummy.sym
sym {equivalent} = Eq.sym
infix 2 _∎
infixr 2 _≈⟨_⟩_ _⇿⟨_⟩_
_≈⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
Isomorphism k X Y → Isomorphism k Y Z → Isomorphism k X Z
_ ≈⟨ X≈Y ⟩ Y≈Z = trans X≈Y Y≈Z
_⇿⟨_⟩_ : ∀ {k x y z} (X : Set x) {Y : Set y} {Z : Set z} →
X ⇿ Y → Isomorphism k Y Z → Isomorphism k X Z
X ⇿⟨ X⇿Y ⟩ Y⇔Z = X ≈⟨ ⇿⇒ X⇿Y ⟩ Y⇔Z
_∎ : ∀ {k x} (X : Set x) → Isomorphism k X X
X ∎ = refl
Isomorphism-setoid : Kind → (ℓ : Level) → Setoid _ _
Isomorphism-setoid k ℓ = record
{ Carrier = Set ℓ
; _≈_ = Isomorphism k
; isEquivalence =
record {refl = _ ∎; sym = sym; trans = _≈⟨_⟩_ _}
} where open EquationalReasoning
InducedEquivalence₁ : Kind → ∀ {a s} {A : Set a}
(S : A → Set s) → Setoid _ _
InducedEquivalence₁ k S = record
{ _≈_ = λ x y → Isomorphism k (S x) (S y)
; isEquivalence = record {refl = refl; sym = sym; trans = trans}
} where open Setoid (Isomorphism-setoid _ _)
InducedEquivalence₂ : Kind → ∀ {a b s} {A : Set a} {B : Set b}
(_S_ : A → B → Set s) → Setoid _ _
InducedEquivalence₂ k _S_ = record
{ _≈_ = λ x y → ∀ {z} → Isomorphism k (z S x) (z S y)
; isEquivalence = record
{ refl = refl
; sym = λ i≈j → sym i≈j
; trans = λ i≈j j≈k → trans i≈j j≈k
}
} where open Setoid (Isomorphism-setoid _ _)
open Dummy public