module Relation.Binary.List.Pointwise where
open import Function
open import Data.Product
open import Data.List
open import Level
open import Relation.Nullary
open import Relation.Binary renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)
private
module Dummy {A : Set} where
infixr 5 _∷_
data Rel (_∼_ : Rel₂ A zero) : List A → List A → Set where
[] : Rel _∼_ [] []
_∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Rel _∼_ xs ys) →
Rel _∼_ (x ∷ xs) (y ∷ ys)
head : ∀ {_∼_ x y xs ys} → Rel _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y
head (x∼y ∷ xs∼ys) = x∼y
tail : ∀ {_∼_ x y xs ys} → Rel _∼_ (x ∷ xs) (y ∷ ys) → Rel _∼_ xs ys
tail (x∼y ∷ xs∼ys) = xs∼ys
reflexive : ∀ {≈ ∼} → ≈ ⇒ ∼ → (Rel ≈) ⇒ (Rel ∼)
reflexive ≈⇒∼ [] = []
reflexive ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ reflexive ≈⇒∼ xs≈ys
refl : ∀ {∼} → Reflexive ∼ → Reflexive (Rel ∼)
refl rfl {[]} = []
refl rfl {x ∷ xs} = rfl ∷ refl rfl
symmetric : ∀ {∼} → Symmetric ∼ → Symmetric (Rel ∼)
symmetric sym [] = []
symmetric sym (x∼y ∷ xs∼ys) = sym x∼y ∷ symmetric sym xs∼ys
transitive : ∀ {∼} → Transitive ∼ → Transitive (Rel ∼)
transitive trans [] [] = []
transitive trans (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) =
trans x∼y y∼z ∷ transitive trans xs∼ys ys∼zs
antisymmetric : ∀ {≈ ≤} → Antisymmetric ≈ ≤ →
Antisymmetric (Rel ≈) (Rel ≤)
antisymmetric antisym [] [] = []
antisymmetric antisym (x∼y ∷ xs∼ys) (y∼x ∷ ys∼xs) =
antisym x∼y y∼x ∷ antisymmetric antisym xs∼ys ys∼xs
respects₂ : ∀ {≈ ∼} → ∼ Respects₂ ≈ → (Rel ∼) Respects₂ (Rel ≈)
respects₂ {≈} {∼} resp =
(λ {xs} {ys} {zs} → resp¹ {xs} {ys} {zs}) ,
(λ {xs} {ys} {zs} → resp² {xs} {ys} {zs})
where
resp¹ : ∀ {xs} → (Rel ∼ xs) Respects (Rel ≈)
resp¹ [] [] = []
resp¹ (x≈y ∷ xs≈ys) (z∼x ∷ zs∼xs) =
proj₁ resp x≈y z∼x ∷ resp¹ xs≈ys zs∼xs
resp² : ∀ {ys} → (flip (Rel ∼) ys) Respects (Rel ≈)
resp² [] [] = []
resp² (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) =
proj₂ resp x≈y x∼z ∷ resp² xs≈ys xs∼zs
decidable : ∀ {∼} → Decidable ∼ → Decidable (Rel ∼)
decidable dec [] [] = yes []
decidable dec [] (y ∷ ys) = no (λ ())
decidable dec (x ∷ xs) [] = no (λ ())
decidable dec (x ∷ xs) (y ∷ ys) with dec x y
... | no ¬x∼y = no (¬x∼y ∘ head)
... | yes x∼y with decidable dec xs ys
... | no ¬xs∼ys = no (¬xs∼ys ∘ tail)
... | yes xs∼ys = yes (x∼y ∷ xs∼ys)
isEquivalence : ∀ {≈} → IsEquivalence ≈ → IsEquivalence (Rel ≈)
isEquivalence eq = record
{ refl = refl Eq.refl
; sym = symmetric Eq.sym
; trans = transitive Eq.trans
} where module Eq = IsEquivalence eq
isPreorder : ∀ {≈ ∼} → IsPreorder ≈ ∼ → IsPreorder (Rel ≈) (Rel ∼)
isPreorder pre = record
{ isEquivalence = isEquivalence Pre.isEquivalence
; reflexive = reflexive Pre.reflexive
; trans = transitive Pre.trans
} where module Pre = IsPreorder pre
isDecEquivalence : ∀ {≈} → IsDecEquivalence ≈ →
IsDecEquivalence (Rel ≈)
isDecEquivalence eq = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = decidable Dec._≟_
} where module Dec = IsDecEquivalence eq
isPartialOrder : ∀ {≈ ≤} → IsPartialOrder ≈ ≤ →
IsPartialOrder (Rel ≈) (Rel ≤)
isPartialOrder po = record
{ isPreorder = isPreorder PO.isPreorder
; antisym = antisymmetric PO.antisym
} where module PO = IsPartialOrder po
Rel≡⇒≡ : Rel _≡_ ⇒ _≡_
Rel≡⇒≡ [] = PropEq.refl
Rel≡⇒≡ (PropEq.refl ∷ xs∼ys) with Rel≡⇒≡ xs∼ys
Rel≡⇒≡ (PropEq.refl ∷ xs∼ys) | PropEq.refl = PropEq.refl
≡⇒Rel≡ : _≡_ ⇒ Rel _≡_
≡⇒Rel≡ PropEq.refl = refl PropEq.refl
open Dummy public
preorder : Preorder _ _ _ → Preorder _ _ _
preorder p = record
{ isPreorder = isPreorder (Preorder.isPreorder p)
}
setoid : Setoid _ _ → Setoid _ _
setoid s = record
{ isEquivalence = isEquivalence (Setoid.isEquivalence s)
}
decSetoid : DecSetoid _ _ → DecSetoid _ _
decSetoid d = record
{ isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d)
}
poset : Poset _ _ _ → Poset _ _ _
poset p = record
{ isPartialOrder = isPartialOrder (Poset.isPartialOrder p)
}