{-# OPTIONS --universe-polymorphism #-}
-- move this to propeq
module Relation.Binary.PropositionalEquality.Extras where

open import Relation.Binary.PropositionalEquality
open import Relation.Binary
open import Relation.Nullary

cong₃ :  {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
          (f : A  B  C  D) {a₁ a₂ b₁ b₂ c₁ c₂}
         a₁  a₂  b₁  b₂  c₁  c₂  f a₁ b₁ c₁  f a₂ b₂ c₂
cong₃ f refl refl refl = refl

_≡≡_ :  {a} {A : Set a} {i j : A}
         (i≡j₁ : i  j) (i≡j₂ : i  j)  i≡j₁  i≡j₂
_≡≡_ refl refl = refl

_≟≡_ :  {a} {A : Set a} {i j : A}  Decidable {A = i  j} _≡_
_≟≡_ refl refl = yes refl