{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.PropositionalEquality.Extras where
open import Relation.Binary.PropositionalEquality
open import Relation.Binary
open import Relation.Nullary
cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
(f : A → B → C → D) {a₁ a₂ b₁ b₂ c₁ c₂}
→ a₁ ≡ a₂ → b₁ ≡ b₂ → c₁ ≡ c₂ → f a₁ b₁ c₁ ≡ f a₂ b₂ c₂
cong₃ f refl refl refl = refl
_≡≡_ : ∀ {a} {A : Set a} {i j : A}
(i≡j₁ : i ≡ j) (i≡j₂ : i ≡ j) → i≡j₁ ≡ i≡j₂
_≡≡_ refl refl = refl
_≟≡_ : ∀ {a} {A : Set a} {i j : A} → Decidable {A = i ≡ j} _≡_
_≟≡_ refl refl = yes refl